EL/\7E Elnec s.r. 0.

User manual for

BeeHive204

Very fast universal 4x 48-pindrive concurrent multiprogramming system with ISP capability

BeeProg2

Very fast universal 48-pindrive Programmer with USB/LPT interface and ISP capability

BeeProg2C

Very fast universal 48-pindrive Programmer with USB interface and ISP capability

SmartProg2

Universal 40-pindrive Programmer with USB interface and ISP capability

Elnec s.r.o.
Presov, Slovakia
4" October 2023

Elnec s.r. 0.

This document is copyrighted by Elnec s.r.o., Presov, Slovakia. All rights reserved. This
document or any part of it may not be copied, reproduced or translated in any form or in any
way without the prior written permission of Elnec s.r.o.

The control program is copyright Elnec s.r.o., Presov, Slovakia. The control program or any
part of it may not be analyzed, disassembled or modified in any form, on any medium, for any
purpose.

Information provided in this manual is intended to be accurate at the moment of release, but
we continuously improve all our products. Please consult manual on www.elnec.com.

Elnec s.r.0. assumes no responsibility for misuse of this manual.

Elnec s.r.o. reserves the right to make changes or improvements to the product described in
this manual at any time without notice. This manual contains names of companies, software
products, etc., which may be trademarks of their respective owners. Elnec s.r.o. respects those
trademarks.

COPYRIGHT © 1991 - 2023
Elnec s.r.o.

2

EL/\7E Elnec s.r. 0.

How to use this manual

This manual explains how to install the control program and how to use your programmer. It is
assumed that the user has some experience with PCs and installation of software. Once you
have installed the control program we recommend you consult the context sensitive HELP
within the control program rather than the printed User manual. Revisions are implemented in
the context sensitive help before the printed User manual.

Dear customer,

thank you for purchasing one of the Elnec
programmer.

Please, download actual version of manual
from Elnec WEB site (www.elnec.com), if
current one will be out of date.

Elnec s.r. 0.

i

i
Table of contents

HOW tO USE thiS MANUALc.iiiiiiiiii e 3
Introduction
ProductS CONFIGUIALION.coiiiie ittt ettt s he e s ae e et e e sbe e sbeesabeebeeebeeebeenaeeaaes 9
O =T U1 (=T 14 1= o £ TP U PRSI
Additional services:.
(O U] o1 1S - 1 PSSP SRUPRPN
DL T = To o FoTY o] T o 4 Lo T PRSP
BeeHive204 .
INEFOAUCTION ...ttt s
BEEHIVE204 EIEMENLS ...t b e
Connecting BeeHive204 to the PC .
Manipulation with the programmed EVICEcciiiiiiiiieiii e 21
In-system serial programming by BEEHIVE204............c.oouiiiiiiiiiieiee ittt 21
Selftest and calibration check
TeChNICAl SPECITICALIONeiiiieteeiee ettt sttt et sttt e sbe e s ae e et e e s b e e aeesanesnneens
BEEPIOG2 / BEEPIOG2C ... ettt ettt ettt ettt s ae e st b e e eb e e s he e e bt e ebe e she e e e ae e e b e e beesnneenneens
Introductionccceveviiiiicnens
BeeProg2 / BeeProg2C elements....................
Connecting BeeProg2 / BeeProg2C to the PC... .
Manipulation with the programmed device...........c.ccccveunne ... 39
In-system serial programming by BeeProg2 / BeeProg2C ...
Multiprogramming by BeeProg2 / BeeProg2C ... "
Selftest and calibration check41
Technical specification 43
SmartProg2........ccoeeveen.50
Introduction51
SmartProg2 elements............. ...52

Connecting SmartProg2 to PC.. ..53
Manipulation with the programmed device...... ..53
In-system serial programming by SmartProg2 ...54
SEIFEEST ... e 55
TeChNICAl SPECITICALIONeiieiieiee ettt st et sb e s bt et e e s e e seesanesaneens 55
Setup
SOfWAIE SELUP ...ttt ettt ae e ae e et e e e he e e he e eab e e bt e she e e eheeeaeeebeesaeeanneenneenneeanne 60
HEAITAWET SEEUD .ttt ettt ettt bt he e eae e e bt e bt e ehe e e et e e bt e she e e sheeeneeenbeenseeenneanneeneas 64

Buffer...
DIBVICE ...t a b

PrOGIAIMIMIET ...ttt e e e e e e s e e e e st e e et e e e sn e e e se e e e annneesnneeenneeaans 115
Options .
[1= T T TP PR OP TSP RPRTPRTOPRRPRON

Common notes ...
Maintenance
Software.........

ELNE

ISP (IN-SyStem Programming)ooeeoeeieeaieeieenieesiieesieesesssesseesaessseesasesabeseaseeseesseesaeesasesnsessnes 171
Other

Troubleshooting and warranty
RILe10]][5 Lo o) 41 o Lo ISP UPR PSS

If you have an unsupported target device
Warranty terms

Elnec s.r. 0.

Elnec s.r. 0.

Conventions used in the manual

References to the control program functions are in bold, e.g. Load, File, Device, etc.
References to control keys are written in brackets <>, e.g. <F1>.

Terminology used in the manual:

Device any kind of programmable integrated circuits or programmable devices

ZIF socket Zero Insertion Force socket used for insertion of target device

Buffer part of memory or disk, used for temporary data storage

Printer port type of PC port (parallel), which is primarily dedicated for printer
connection.

USB port type of PC port (serial), which is dedicated for connecting portable
and peripheral devices.

HEX data format format of data file, which may be read with standard text viewers;

e.g. byte 5AH is stored as characters '5' and 'A’, which mean bytes
35H and 41H. One line of this HEX file (one record) contains start
address and data bytes. All records are secured with checksum.

C%EL/\:;)EE ? Introduction

Introduction

Elnec s.r. 0.

This user manual covers these Elnec programmers: BeeHive204, BeeProg2, BeeProg2C,
and SmartProg2.

BeeHive204 is extremely fast universal 4x 48-pindrive concurrent multiprogramming
system designed for high volume production programming with minimal operator effort. The
chips are programmed at near theoretical maximum programming speed. Using build-in ISP
connectors the programmer is able to program ISP capable chips in circuit.

BeeProg2 is an extremely fast universal USB/LPT interfaced universal programmer and logic
IC tester with 48 powerful pindrivers. Using build-in ISP connector the programmer is able to
program ISP capable chips in circuit. This design allows easily add new devices to the device
list. BeeProg2 is a true universal and a true low cost programmer, providing one of the best
"value for money" in today's market.

BeeProg2C is a cost effective version of BeeProg2 programmer (without some special
devices and LPT port interface). If you need program some of the mentioned devices, please
take a look at BeeProg2 programmer.

SmartProg2 is a small, fast and powerful USB interfaced programmer of all kinds of
programmable devices. Using build-in ISP connector the programmer is able to program ISP
capable chips in circuit. It has design, which allows easily add new devices to the device list.
Nice "value for money" in this class.

All our programmers work with almost any IBM PC compatible, portable or desktop personal
computers. Programmers use the USB port or parallel (printer) port of PC.

All programmers are driven by an easy-to-use, control program with pull-down menus, hot
keys and online help. Control program is common for all EInec programmers.

Advanced design, including protection circuits, original brand components and careful
manufacturing allows us to provide a three-year warranty for BeeHive204, BeeProg2,
BeeProg2C and SmartProg2 on parts and workmanship of the programmers (limited 25,000
cycle warranty on ZIF socket). This warranty terms are valid for customers, who purchase a
programmer directly from Elnec company. The warranty conditions of Elnec sellers may differ
depending on the target country law system or Elnec seller’'s warranty policy.

{20
GELN

Introduction

Products configuration

Before installing and using your programmer, please carefully check that your package
includes all next mentioned parts. If you find any discrepancy with respective parts list and/or if

any of these items are damaged, please contact your distributor immediately.

< N
N o~ g 2

(3] D D =

= < <3 &

T o o]

[5] [5] [5]

o) o) o) £

s} m m n

programmer . . .

USB cable 1,8m

LPT cable 1,8m - * - -

ISP cable 0,2m 4x . . .

power cordset 1,2m
internal power supply ° . . -
external power supply - - - .

48 pins diagnostic pod — type | 1x ° ° -
40 pins diagnostic pod — type | - - - .
Diagnostic pod for ISP connectors #2 1x . . -
ZIF anti-dust cover 4x . . .

CD with software and user manual

Quick Guide

calibration test report

leaflet Notes about ESD

antistatic set

vacuum handling tool kit

sticker register your programmer

transport case

* optional accessories

Elnec s.r. 0.

PC requirements

Minimal PC requirements

<
S <
N
2 S & § g
3 s g9 g
@ T $% g
x Q O D £
N m m o]
OS - Windows XP XP XP XP
CPU C2D C2D C2D C2D
RAM [MB] 1000 1000 1000 1000
free disk space [MB] 500 500 500 500
USB 2.0 high speed
LPT - - . _

The "Minimal PC requirements" mean that the device programmer and SW will run at these
conditions, but not with fully enjoyable experience. 1024 x 768 is minimal monitor resolution.

Optimal PC requirements

<
S <
N
2 S & § g
3 s g3 g
o T 5% g
x o) O O £
N om o m (]
OS - Windows 7 7 7 7
CPU Coreis® | Corei3™ | Corei3™ | Corei3™
RAM [MB] 40007 2000? | 2000% | 20007
free disk space [MB] 200072 100072 1000% | 100072
USB 2.0 high speed . . .
2x USB 2.0 high .
speed controllers
We recommended using higher monitor resolution as 1024 x 768.
*1 — or better *2 — or more

These PC requirements are valid for 3.38 version of PG4UW (issued 2.2018) and above.

If two programmers are to be connected to a single PC, then we strongly recommend

connecting each programmer to separate USB 2.0 High speed controller (USB EHCI). For
more information see "Hardware setup" chapter.

10

6%EL/\:;)EE ? Introduction

Free disk space requirement depends also on used IC device size and number of attached
programming sites. For large devices the required free space on disk will be approximately
1000MB + 2x Device size x number of programming sites attached to this PC.

Very easy indication, if your PC in hardware/software configuration is good enough for the
current software version and current situation with PG4UW/PG4UWMC, is to run Windows
task manager (Ctrl+Alt+Del) and see the performance folder. It has to be max. 80% of CPU
usage at full run of programming system.

Additional services:

» free technical support (phone/e-mail)
o free lifetime software update via Web site

Free software updates are available from our
Internet address www.elnec.com.

¢ AIgOR (Algorithm On Request) is a free service, with which we respond (as flexibly as
possible) to the customer's request regarding the implementation of programming support for
new devices into the current control program. This service can be used also to ask for new
features of the control program. For more information see www.elnec.com.

e Keep-Current is a subscription service, with which your Elnec programmer and
documentation is up-to-date with the latest device support and control program's features.
Elnec ships of a latest version of programmer software and updated user documentation
(Keep-Current package). A Keep-Current service is your hassle-free guarantee that you are
doing the highest quality programming on Elnec programmers, at minimal cost. For more
information see www.elnec.com.

Why is it important to use the latest version of PG4UW?

¢ At every moment semiconductor manufacturers introduce into the market new devices with
new package types, manufactured by new technologies to support the need for flexibility,
quality and speed in product design and manufacturing. Within a year we implement into the
control program support of more than 7000 new devices.

A typical programmable device undergoes several changes during it's lifetime in an effort to
maintain or improve device characteristics and process yields. These changes often have
effect to programming algorithms change (programming algorithm is set of instructions that
tells the programmer how to program data into a particular type of device). Using the newest
algorithm in programming process is key to obtaining quality result. In many cases, while the
older algorithm will program the device, it may not provide the level of data retention that
would be possible with an optimal algorithm. Failure to use the most current algorithm can
decrease your programming Yields (it increase count of bad programmed devices), often
increase programming times, or even affect the long term reliability of the programmed
device.

¢ We are making mistakes too...

Our commitment is to implement support for these new or modified parts before or as soon as
possible after their distribution, so that you can be sure that you are using latest and/or optimal
programming algorithms that were specifically created for this device.

.|
11

Elnec s.r. 0.

Quick Start

12

EL/\7E Quick Start

Installing programmer hardware

e connect the USB (or LPT) port of programmer to a USB (or printer) port of PC using supplied
cable

e connect the connector of the power supply adapter to the programmer or turn on
programmer by switch

Installing the programmer software

Run the installation program from the CD (setup.exe) and follow the on-screen instructions.
Please, for latest information about the programmer hardware and software see
www.elnec.com.

Run the control program
_ﬁ
-a-;
Double click on Ea
After start, control program PG4UW automatically scans all existing ports and searches for any

connected Elnec programmer. Program PG4UW is common for all Elnec programmers hence
PG4UW will try to find all supported programmers.

Menu File is used for source files manipulation, settings and viewing directory, changes drives,
changes start and finish address of buffer for loading and saving files and loading and saving
projects.

Menu Buffer is used for buffer manipulation, block operation, filling a part of buffer with string,
erasing, checksum and of course editing and viewing with other items (find and replace string,
printing...).

Menu Device is used for a work with selected programmable device: select, read, blank check,
program, verify, erase and setting of programming process, serialization and associated file
control.

Menu Programmer is used for work with programmer.

Menu Options is used to view and change various default settings.

Menu Help is used for view supported devices and programmers and information about
program version.

Programming a device

~ .
"'u
1. select device: click on ¥

2. load data into buffer:

a) from file: click on b "'|_L|
b) from device: insert device to ZIF and click on K.
3. insert target device to the ZIF

13

Elnec s.r. 0.

&
4. check, if the device is blank: cligk on ¥

1

s
5. program device: click on 3

& |

6. additional verify of device: click on 2

14

A0

EL

NE

Detailed description

Detailed description

15

Elnec s.r. 0.

BeeHive204

= /iE BeeHive204

Introduction

BeeHive204 is extremely fast universal 4x 48-pindrive concurrent production programmer
(multiprogramming system) designed for high volume production programming with minimal
operator effort. The chips are programmed at near theoretical maximum programming speed.

BeeHive204 consist of four independent isolated universal programming sites, based on the
BeeProg2 programmer hardware. Therefore the programming sites can run asynchronously
(concurrent programming mode). Each programming module starts programming at the
moment the chip is detected to be inserted in the socket properly - independently on the status
of other programming sites. It result three programming sites works while you replace the
programmed chip at the fourth.

Modular construction of hardware - the programming modules works independently - allows for
continuing operation when a part of the circuit becomes inoperable. It also makes service quick
and easy.

Hands-free operation: asynchronous and concurrent operation allows a chip to begin
programming immediately upon insertion of a chip. The operator merely removes the finished
chip and inserts a new chip. Operator training is therefore minimized...

BeeHive204 supports all kinds of types and silicon technologies of today and tomorrow
programmable devices without family-specific module. You can be sure the next devices
support require the software update and (if necessary) simple package converter
(programming adapter), therefore the ownership cost are minimized.

Using built-in in-circuit serial programming (ISP) connector, the programmer is able to program
ISP capable chips in circuit.

BeeHive204 provide very competitive price coupled with excellent hardware design for reliable
programming. It has probably best "value for money" programmer in this class.

BeeHive204 provides very fast programming due to high-speed FPGA driven hardware and
execution of time-critical routines inside of the programmer. As a result, when used in
production this programmer waits for an operator, and not the other way round.

BeeHive204 interfaces with the IBM PC compatible personal computers, running MS Windows
OS, through USB (2.0 High Speed) port.

BeeHive204 provides a banana jack for ESD wrist straps connection to easy-to-implement the
ESD protection control and also other banana jack for earth wire.

FPGA based totally reconfigurable 48 powerful TTL pindrivers provide H/L/pull_up/pull_down
and read capability for each pin of socket. Advanced pindrivers incorporate high-quality high-
speed circuitry to deliver signals without overshoot or ground bounce for all supported devices.
Pin drivers operate down to 1.8V so you'll be ready to program the full range of today's
advanced low-voltage devices.

Each programming sites performs device insertion test based on the check of proper signal
path between the programmer and programmed device before it programs each device. In

.|
17

Elnec s.r. 0.

dependence on programming configuration it identifies missed or poor contact between
programmed device and the ZIF socket of the programming adapter (or the programmer
directly), missed or poor contact between the programming adapter and the programmer and
it's also able to indicate wrong position of device in the ZIF socket of the programmer / the
programming adapter (moved, rotated, backward oriented). These capabilities, supported by
overcurrent protection and signature-byte check help prevent chip damage due to operator
error.

BeeHive204 has the selftest capability, which allows run diagnostic part of software to
thoroughly check the health of the each programming module.

BeeHive204 has a built-in protection circuits for eliminate damage of programmer and/or
programmed device due to environment or operator failure. All ZIF socket pins of BeeHive204
programmer are protected against ESD up to 15kV.

When programming specification require, the (BeeHive204) programmer performs
programming verification at the marginal level of supply voltage, which, obviously, improves
programming yield, and guarantees long data retention.

Various programming adapters are available to handle device in PLCC, SOIC, PSOP,
SSOP, TSOP, TSSOP, TQFP, QFN (MLF), SDIP, BGA and other packages.

Each programming site is driven by an easy-to-use control program with pull-down menu,
hot keys and on-line help. Selecting of device is performed by its class, by manufacturer or
simply by typing a fragment of vendor name and/or part number. It is the same years-proven
software, as is used for all other Elnec single-site programmers.

Standard device-related commands (read, blank check, program, verify, erase) are boosted
by some test functions (insertion test, signature-byte check), and some special functions
(autoincrement, production mode - start immediately after insertion of chip into socket).

All known data formats are supported. Automatic file format detection and conversion during
load of file. There is possible to use Jam files (JEDEC standard JESD-71) and VME files.

The rich-featured autoincrement function enables to assign individual serial numbers to each
programmed device - or simply increments a serial number, or the function enables to read
serial numbers or any programmed device identification signatures from a file.

The software also provides a lot of information about programmed device. As a special, the
drawings of all available packages and explanation of chip labeling (the meaning of
prefixes and suffixes at the chips) for each supported chip are provided.

The software provide full information for ISP implementation: Description of ISP connector pins
for currently selected chip, recommended target design around in-circuit programmed chip and
other necessary information.

The remote control feature allows PG4UW software to be flow controlled by other application
— either using .BAT file commands or using DLL file. For BeeHive204 is remote control limited
for ISP programming only. Please use BeeHive204AP for automated off line programming.

Jam files of JEDEC standard JESD-71 are interpreted by Jam Player. Jam files are
generated by design software which is provided by manufacturer of respective programmable

.|
18

= /iE BeeHive204

device. Chips are programmed in ZIF or through ISP connector (IEEE 1149.1 Joint Test Action
Group (JTAG) interface).

VME files are interpreted by VME Player. VME file is a compressed binary variation of SVF file
and contains high-level |IEEE 1149.1 bus operations. VME files are generated by design
software which is provided by manufacturer of respective programmable device. Chips are
programmed in ZIF or through ISP connector (IEEE 1149.1 Joint Test Action Group (JTAG)
interface).

Multiple devices are possible to program and test via JTAG chain: JTAG chain (ISP-Jam) or
JTAG chain (ISP-VME).

It is important to remember that in most cases new devices require only a software update,
because the BeeHive204 is based on the truly universal (BeeProg2) programmer. With our
prompt service you can have new devices can be added to the current list within hours! See
AlgOR (Algorithm On Request) service and OnDemand software for details.

This service is almost in all cases free. Please note that we can ask customer to share the cost
if development cost is too high.

Combination of extensive stock, flexible manufacturing and shipping of Elnec products by
world class carriers (like DHL) warrants customers very fast and secure delivery of ordered
Elnec products. Products ordered before 10 a.m. (CET) will be dispatched the same working
day (if products are in stock and the payment is done by online payment (CardPay, PayPal).

Advanced design including protection circuits, original brand components and careful
manufacturing and burning allows us to provide a three-year warranty on parts and labor for
the BeeHive204 (limited 25,000-cycle warranty on ZIF socket). Elnec provides free shipping of
programmer repaired under warranty back to customer world wide. Warranty is valid from the
date of purchase. Preferential handling of repair requests ensures registration of the product
that should be done within 60 days from the date of purchase.

19

Elnec s.r. 0.

BeeHive204 elements

48 pin ZIF socket

work result LEDs
power/sleep LED of site
YES! Button

ISP connector

LED indicator power

oM wN R

7. power supply connector

8. power switch

9. "GND" connector can be used for grounding of the programmer
"ESD wrist strap" connector is place for attaching of ESD wrist strap

10. temperature controlled fans

11. type B USB connector for PC <> BeeHive204 communication cable

= /\7E BeeHive204

Connecting BeeHive204 to the PC

Recommendation for connecting programmer to PC:

1. make ground connection between programmer and PC or other ground
2. connect programmer with PC via USB cable

3. connect power supply to programmer and turn on by power switch “8”.
4. run PG4UW control program and connect programmer

Manipulation with the programmed device

After selection of desired device for your work, you can insert it into the open ZIF socket (the
lever is up) and close socket (the lever is down). The correct orientation of the programmed
device in ZIF socket is shown on the picture near ZIF socket on the programmer's cover. The
programmed device is necessary to insert into the socket also to remove from the socket when
LED BUSY light off.

Note: Programmer's protection electronics protect the target device and the programmer itself
against either short or long-term power failures and, partly, also against a PC failure. However,
it is not possible to grant the integrity of the target device due to incorrect, user-selected
programming parameters. Target device may be not destroyed by forced interruption of the
control program (reset or switch-off PC), by removing the physical connection to the
programmer, but the content of actually programmed cell may remains undefined. Don't unplug
the target device from the ZIF socket during work with devices (LED BUSY shine).

In-system serial programming by BeeHive204

Optimized advanced pindriver deliver programming performance without overshoot or ground
bounce for all device technologies. Pin drivers operate down to 1.8V so you'll be ready to
program the full range of today's advanced low- voltage devices.

The ISP programming solution performs programming verification at the marginal level of
supply voltage, which, obviously, improves programming yield, and guarantees long data
retention.

The ISP programming solution provides also the power supply for the target system.
This ISP programming solution provides very competitive price but excellent hardware design
for reliable programming.

The software provide full information for ISP implementation: Description of ISP connector pins
for currently selected chip, recommended target design around in-circuit programmed chip and
other necessary information.

For general definition, recommendation and direction about ISP see section Common notes /
ISP please.

21

Elnec s.r. 0.

i
Description of ISP connector

As ISP connector inside programmer is used 2 rows, 2,54mm (0.1") pitch connector with 20
positions like 5103310-5 from TE connectivity or other compatible connector.

2 4 6 8 1012 14 16 18 20
L R MO M ' ' R

1 3 5 7 9 11 .13 15 17 19
L D Y R M e B R R}

Front view at ISP connector.
H/L/read driver

| pins 3, 5,7, 9, 11, 13 of ISP connector I pin 14 of ISP connector

| A B)

| drivers in programmer pin of ISP drivers in programmer pin of ISP
connector VC connector

| RAL

| Float I: ?

| Read

| Read E)
pin of ISP
| CEL, connector
Pull-up/
Pull-down RC2 HL
| RE1

RA1 180R, RA2 1k3, RA3 22k,
RB1 10k, RB2 10Kk,
CC1 1n, RC1 1k3, RC2 22k,
RD1 22k, CE1 1n, RE1 1k3,

Pull-up/ YES!
Pull-down _T_
I
GND
I ____________ L — e — — —_ —_ — — —
| pins 15, 16 of ISP connector I
| © D) I
| drivers in programmer CCL gy pin of ISP pin of ISP I
10 connector connector |
| WL RD1
——1+—— _L—IZI— [
o |
I
I
I
I
I

Comment to above picture:

B) Pin 14 is an input pin. Pulse to logical L has same function as pressing Yes! button on the
top of programmer,

C) Connection of pins 15 and 16 when are configured as logical signal needed for ISP
programming,

D) E) When pins 15 and 16 are configured as status of LED OK and LED ERROR than are
output pins,

D) before first action with desired ISP device,

E) After first action with desired ISP device.

.|
22

ELNE

Notes:

e When LED OK or LED ERROR ON (shine), this status is presented as logical H, level of H is
1,8V - 5V depend on H level of desired ISP device.

e When LED OK or LED ERROR OFF (not shine), this status is presented as logical L, level of
Lis OV -0,4V.

e The above mentioned values are provided to understand (and also to exactly calculate) the
value of resistors, which isolate (separate) the programmed chip and target system.

e These signals may stay unconnected, if you don't use them.

BeeHive204

Specification of ISP connector pins depends on the device, which you want to program. You
can find it in the control SW for programmer (PG4UW), menu Device / Device Info (Ctrl+F1).
Be aware, the ISP programming way of respective device must be selected. It is indicated by
(ISP) suffix after name of selected device.

These specifications correspond with application notes published of device manufacturers.
Used application notes you may find on www.elnec.com, section Support / Application Notes.

Notes:

e Pin no. 1 is signed by triangle scratch on ISP cable connectors.

e As ISP connectors at ISP cable are used 2 rows, 2,54mm (0.1") pitch connector with 20
positions like 09185207813 from Harting or other compatible connector.

~— cimw
/"‘(‘

BeeHive204 ISP cable

Warnings:

e Use only attached ISP cable. When you use other ISP cable (other material, length...),
programming may occur unreliable.

e BeeHive204 can supply programmed device (pin 1 of ISP connector) and target system
(pins 19 and 20 of ISP connector) with limitation (see Technical specification / ISP
connector).

e BeeHive204 apply programming voltage to target device and checks his value (target
system can modify programming voltage). If the programming voltage is different as
expected, no action with target device will be executed.

Selftest and calibration check

If you feel that your programmer does not react according to your expectation, please run the
programmer (ISP connector) selftest using Diagnostic pod (Diagnostic pod for ISP connectors
#2), enclosed in the standard delivery package.

23

Elnec s.r. 0.

Selftest of programmer

e Insert 48 pins diagnostic pod - type | into ZIF socket of the programmer. 48 pins
diagnostic pod - type | must be inserted as 48 pins device.

¢ Run selftest of programmer in PG4UW (menu Programmer / Selftest).

Selftest of ISP connector
e Insert Diagnostic pod for ISP connectors #2 into ZIF socket of the programmer.
Diagnostic pod for ISP connectors #2 must be inserted as 48 pins device.
¢ Interconnect 20 pins connector of Diagnostic pod for ISP connectors #2 with an ISP
connector of the programmer with an ISP cable, included in delivery programmer package.
Be sure that pins are interconnected properly (i.e. 1-1, 2-2... 20-20).
¢ Run selftest of ISP connector in PG4UW (menu Programmer / Selftest ISP connector...).

Calibration test

e Insert 48 Pins Calibration test pod, Type | into ZIF socket of the programmer. 48 Pins
Calibration test pod, Type | must be inserted as 48 pins device.
* Run calibration test of programmer in PG4UW (menu Programmer / Calibration test).

3

24

= /\7E BeeHive204

Technical specification

Specification (BeeHive204 multiprogramming system)

e 4x universal programming sites (4x 48-pin DIL ZIF sockets), Beeprog2 programming core
based

e operation result LEDs, LED power

e USB 2.0 high-speed compatible port

e line power input 100-240VAC/60W max.

e protection against surge and ESD on power supply input

¢ banana jack for ESD wrist straps connection

¢ banana jack for connection to ground

Specification (valid for each programming module)
HARDWARE

Base unit, DACs

e USB 2.0 high-speed compatible port, up to 480 Mb/s transfer rate

¢ on-board intelligence: powerful microprocessor and FPGA based state machine
« three D/A converters for VCCP, VPP1, and VPP2, controllable rise and fall time
e VCCP range 0...8V/1A

e VPP1, VPP2 range 0...26V/1A

o selftest capability

ZIF sockets, pindriver

e 48-pin DIL ZIF (Zero Insertion Force) socket accepts both 300/600 mil devices up to 48-pin
e pindrivers: 48 universal

¢ VCCP/VPP1/VPP2 can be connected to each pin

» perfect ground for each pin

FPGA based TTL driver provides H, L, CLK, pull-up, pull-down on all pindriver pins

analog pindriver output level selectable from 1.8 V up to 26V

current limitation, overcurrent shutdown, power failure shutdown

ESD protection on each pin of socket (IEC1000-4-2: 15kV air, 8kV contact)

e continuity test: each pin is tested before every programming operation

ISP connector

e 20-pin male type with miss insertion lock

e 6 TTL pindrivers, provides H, L, CLK, pull-up, pull-down; level H selectable from 1.8V up to
5V to handle all (low-voltage including) devices.

¢ 1x VCCP voltage (range 2V...7V/100mA)

e programmed chip voltage (VCCP) with both source/sink capability and voltage sense

¢ 1x VPP voltage (range 2V...25V/50mA) , can be applied to six pins

e Target system power supply voltage (range 2V...6V/250mA)

.|
25

Elnec s.r. 0.

e ESD protection on each pin of ISP connector (IEC1000-4-2: 15kV air, 8kV contact)

e Only for ISP device: two output signals, which indicate state of work result = LED OK and
LED Error (active level: min 1.8V)

e input signal, switch YES! equivalent (active level L: max 0.8V)

DEVICE SUPPORT

Programmer, in ZIF socket

e NAND FLASH: Samsung K9xxx, KFxxx, SK Hynix (ex Hynix) HY27xxx, H27xxx, Toshiba
TC58xxx, TH58xxx, Micron MT29Fxxx, (ex Numonyx ex STM) NANDxxx, Spansion
S30Mxxx, S34xxx, 3D-Plus 3DFNxxx, ATO Solution AFNDxxx, Fidelix FMNDxxx, Eon
Silicon Sol. EN27xxx, ESMT F59xxx, LBA-NAND Toshiba THGVNxxx, Macronix MX30xxx,
MX60xxx, Winbond W29Nxxx
serial NAND FLASH: Micron MT29Fxxx, GigaDevice GD5Fxxx, Winbond W25Nxxx, ESMT
F50xxx, ATO Solution ATO25xxx, All-Flash AFAxxx, AFSxxx, Macronix MX35xxx
eMMC: Hynix H26Mxxxxxxxx, Kingston KE44B-xxxx/xxx, Micron MTFCxxxxxx, Numonyx
NANDxxxxxxxx, Phison PSM4A11-xx, Samsung KLMxxxxxxx, SanDisk SDINxxx-xx, Toshiba
THGBMXXXXXXXXXX
eMCP: eMMC+RAM
Memory Cards: MMC, SD, SDHC, SDXC
Multi-chip devices: NAND+RAM, NOR+RAM, NOR+NOR+RAM, NAND+NOR+RAM
Serial Flash: standard SPI, high performance Dual I/O SPI and Quad /O SPI (25Bxxx,
25Dxxx, 25Exxx, 25Fxxx, 25Lxxx, 25Mxxx, 25PxxX, 25QxxX, 25SxxX, 25Txxx, 25UxxX,
25Vxxx, 25Wxxx, 25XxxX, 26Vxxx, 45PExx, MX66Lxxx, S7TOFLxxx), DataFlash (AT45Dxxx,
AT26DxxX)
parallel NOR Flash: 28Fxxx, 29CxxX, 29Fxxx, 29GLxxx, 29BVxxX, 29LVxxx, 29WXxxXx,
49Fxxx series, Samsung's K8Fxxxx, K8Cxxxx, K8Sxxxx, KBPxxxx series, ...
EPROM: NMOS/CMOS, 27xxx and 27Cxxx series
EEPROM: NMOS/CMOS, 28xxx, 28Cxxx, 27EExxx series, 3D Plus 3DEEXXXXXXXX
mDOC H3: SanDisk (ex M-Systems) SDED5xxx, SDED7xxx, MD2533xxx, MD2534xxXx,
Hynix HY23xxx
FRAM: Ramtron
MRAM: Everspin MRxxxxx8X, 3D Plus 3DMRXXXXXXXX
NV RAM: Dallas DSxxx, SGS/Inmos MKxxx, SIMTEK STKxxx, XICOR 2xxx, ZMD U63x
series
Serial E(E)PROM: 11LCxxx, 24CxxXx, 24Fxxx, 25CxxX, 30T SExxx, 34CxxX, 34T Sxx, 59CxxXx,
85xxx, 93Cxxx, NVM3060, MDAxxx series, full support for LV series, AT88SCxxx
Serial FRAM: Cypress(Ramtron): FM24xxxxxx, FM25xxxxxx, Fujitsu: MB85RCxxxX,
MBB85RSxxxx, Lapis(OKI, Rohm): MR44xxxxx, MR45xxxxx
Serial MRAM: Everspin MH20xxx, MH25xxx
Configuration (EE)PROM: XCFxxx, XC17xxxx, XC18Vxxx, EPCxxx, EPCSxxx, AT17xxX,
AT18Fxxx, 37LVXx
1-Wire E(E)PROM: DS1xxx, DS2xxx
PLD Altera: MAX 3000A, MAX 7000A, MAX 7000B, MAX 7000S, MAX7000AE, MAX Il/G/Z,
MAX V
PLD Lattice: ispGAL22V10x, ispLSI1xxx, iSpLSIIxXxXEA, ispLSI2xxx, iSpLSI2xxxA,
iISPLSI2XXXE, ispLSI2xxxV, ispLSI2xxxVE, ispLSI2xxxVL, LC4xxxB/C/NV/ZCIZE, MA4-xx/xXx,
M4A3-xx/xx, MAA5-xx/xx, MALV-xx/xx, ispCLOCK, Power Manager/Il, ProcessorPM
e PLD: Xilinx: XC9500, XC9500XL, XC9500XV, CoolRunner XPLA3, CoolRunner-II

26

= /iE BeeHive204

e SPLD/CPLD series: AMD, AMI, Atmel, Cypress, Gould, ICT, Lattice, National Semicond.,
Philips, STMicroelectronics, Tl (TMS), Vantis, VLSI

e FPGA: Microsemi(Actel): ProASIC3, IGLOO, Fusion, ProASICplus, SmartFusion

e FPGA: Lattice: MachXO, MachX02, LatticeXP, LatticeXP2, ispXPGA

e FPGA: Xilinx: Spartan-3AN

L]

L]

Clocks: TI(TMS), Cypress
Special chips: Atmel Tire Pressure Monitoring ATA6285N, ATA6286N; PWM controllers:
Zilker Labs, Analog Devices; Multi-Phase ICs: IR(Chil Semiconductor); Gamma buffers:
AUO, Maxim, TI, ...

e Microcontrollers MCS51 series: 87Cxxx, 87LVxx, 89Cxxx, 89SxxX, 89Fxxx, 89LVxxX,
89LSxxx, 89LPxxx, 89Exxx, 89Lxxx, all manufacturers, Philips LPC series

e Microcontrollers Intel 196 series: 87C196 KB/KC/KD/KT/KR/...

Microcontrollers Atmel ARM. AT91SAM7Sxx, AT91SAM7Lxx, AT91SAM7XXxX,

AT91SAMT7XCxx, AT91SAM7SEXX series;

e Microcontrollers Atmel ARM9: AT91SAM9XxxX series;

e Microcontrollers ARM Cortex-M0+: ATSAMCxxx, ATSAMRXxXx series

e Microcontrollers ARM Cortex-M3: ATSAM3Axxx, ATSAM3Uxxx, ATSAM3NXXX,
ATSAM3Sxxx, ATSAMD20, ATSAM3Xxxx series

e Microcontrollers ARM Cortex-M4: ATSAM4Exxx, ATSAMA4Lxxx, ATSAM4ANXXX,
ATSAMASxxx, ATSAMGXxxx series

¢ Microcontrollers Atmel AVR 8bit/16bit: AT90Sxxxx, AT90pwm, AT90can, AT90usb, ATtiny,

ATmega, ATxmega series

Microcontrollers Atmel AVR32: AT32UC3xxxx, ATUCxxxD3/D4/L3U/L4U series

Microcontrollers Tl (Chipcon): CC11xx, CC24xx, CC25xx, CC85xx series

Microcontrollers Coreriver: Atom 1.0, MiDAS1.0, 1.1, 2.0, 2.1, 2.2, 3.0 series

Microcontrollers Cypress: CY7CxxxxX, CY8CXXXXX

Microcontrollers ELAN: EM78Pxxx

Microcontrollers EPSON: S1C17 series

Microcontrollers Explore Microelectronic: EPF01x, EPF02x series

Microcontrollers Generalplus: GPM8Fxxx series

Microcontrollers GreenPeak: GPxxx series

Microcontrollers Infineon(Siemens): XC800, C500, XC166, C166 series

Microcontrollers MDT 1xxx and 2xxX series

Microcontrollers Megawin: MG87xxx, MPC82xxx series

Microcontrollers Microchip PICmicro: PIC10xxx, PIC12xxx, PIC16xxx, PIC17CxxX,

PIC18xxx, PIC24xxx, dsPIC, PIC32xxx series

Microcontrollers Motorola/Freescale: HC05, HC08, HC11, HC12, HCS08, RS08, S12, S12X,

S12 MagniV, MC56F, MCF51, MCF52 series, Kinetis (K,L,M,V,E,EA), Qorivva/5xxx Power

Architecture

Microcontrollers Myson MTV2xx, 3xX, 4xx, 5xx, CS89xx series

Microcontrollers National: COP8xxx series

Microcontrollers NEC: uPD70Fxxx, uPD78Fxxx series

e Microcontrollers Novatek: NT68xxx series

Microcontrollers Nordic Semiconductor: nRF24LExxx, nRF24LUxxx, NRF315xx, nRF51xxx

Flash and OTP series

e Microcontrollers Nuvoton ARM Cortex-Mx: NUC1xx, NUC2xx, M05x, Mini51, Nanolxx series

e Microcontrollers Nuvoton (Winbond): N79xxx, W77xxx, W 78xxx, W 79xxx, W 83xxx series

27

Elnec s.r. 0.

e Microcontrollers NXP (Philips) ARM Cortex-Mx: LPC11xx, LPC11Cxx, LPC11Dxx,
LPC11Uxx, LPC12xx, LPC12Dxx, LPC13xx, LPC17xx, LPC11Axx, LPC11Exx, LPC11xxLV,
LPC18xx, LPC43xx, LPC8xx, EM7xXx, series
Microcontrollers NXP (Philips) UOC series: UOCIIl, UOC-TOP, UOC-Fighter (TDAL1xxxx)
series
Microcontrollers NXP (Philips) ARM7: LPC2xxx, MPT6xx, PCD807xx, SAF7780xxx series
Microcontrollers NXP (Philips) ARM9: LPC31xx series
Microcontrollers Pasat: TinyModule DIL40, DIL50 series
Microcontrollers Scenix (Ubicom): SXxxx series
Microcontrollers Syntek: STK6xxx series
Microcontrollers Renesas: R8C/Tiny, RX, uPD70Fxxx, uPD78Fxxx, RH850, RL78, R32C
series
Microcontrollers SyncMOS: SM39xxX, SM59xxX, SM73xxx, SM79xxx, SM89xxx series
Microcontrollers & Programmable System Memory STMicroelectronics: uPSD, PSD series
Microcontrollers STM (ex SGS-Thomson): ST6xx, ST7xx, ST10xx, STR7xx, STRO9xx,
STM32F/L/W, STMBA/S/L series, SPC5 (Power Architecture)
Microcontrollers Silicon Laboratories(Cygnal): C8051 series
Microcontrollers Silicon Laboratories(Energy Micro): EFM32Gxx, EFM32GGxx, EFM32LGxX,
EFM32TGxx, EFM32W Gxx series
Microcontrollers Silicon Laboratories: SiM3Cxxx, SiM3Lxxx, SiM3Uxxx series
Microcontrollers Texas Instruments: MSP430 series, MSC12xx series, TMS320F series,
CC430 series,
Microcontrollers Texas Instruments (ex Luminary Micro): LM3Sxxx, LM3Sxxxx series,
LM4Fxxxx series, TM4C series
Microcontrollers ZILOG: Z86/Z89xxx and Z8Fxxxx, Z8FMCxxxxX, Z16Fxxxx, ZGP323XXXXXX,
ZLFB45xxxxxXX, ZLP12840xxxxX, ZLP323XXXXXXX series
Microcontrollers other: EM Microelectronic, Spansion(Fujitsu), Goal Semiconductor, Hitachi,
Holtek, Novatek, Macronix, Princeton, Winbond, Samsung, Toshiba, Mitsubishi, Realtek, M-
Square, ASP, Coreriver, Gencore, EXODUS Microelectronic, Topro, TinyARM, VersaChips,
SunplusIT, M-Square, QIXIN, Signetic, Tekmos, Weltrend, Amic, Cyrod Technologies,
Ember, Ramtron, Nordic Semiconductor, Samsung, ABOV Semiconductor...
EPROM: 2708 *1
PLD: Bipolar PALxxx *2
.C. Tester

o TTL type: 54,74 S/LS/ALS/H/HC/HCT series

e CMOS type: 4000, 4500 series

e static RAM: 6116... 624000

¢ user definable test pattern generation
Programmer, through ISP connector

e Serial E(E)PROM: IIC series, MW series, SPI series, KEELOQ series, PLD configuration
memories, UN /O series
1-Wire E(E)PROM: DS1xxx, DS2xxx
Serial Flash: standard SPI (25xxx), DataFlash (AT45Dxxx, AT 26DxxXx)
Serial FRAM: Cypress(Ramtron): FM24xxxxxx, FM25xxxxxx, Fujitsu: MB85RCxXxxX,
MBB85RSxxxx, Lapis(OKI, Rohm): MR44xxxxx, MR45xxxxx
Microcontrollers ARM Cortex-M0+: ATSAMCxxx series
e Microcontrollers ARM Cortex-M4: ATSAMA4NXxxx, ATSAM4Sxxx series
Microcontrollers ARM Cortex-M3: ATSAM3Axxx, ATSAM3Uxxx, ATSAM3NXxXxX,
ATSAM3Sxxx, ATSAMD20, ATSAM3Xxxx series

.|
28

= /iE BeeHive204

e Microcontrollers Atmel: AT89Cxxx, AT89Sxxx, AT89LSxxx, AT89LPxxx, AT90pwm,
AT90can, AT90usb, AT90Sxxxx, ATtiny, ATmega, ATxmega series

e Microcontrollers Atmel AVR32: AT32UC3xxxx, ATUCxxxD3/D4/L3U/L4U series

e Microcontrollers Atmel ARM7: AT91SAM7Sxx, AT91SAM7XxX, AT9ILSAM7XCxX,

AT91SAM7SEXX series;

Microcontrollers Tl (Chipcon): CC11xx, CC24xx, CC25xx, CC85xx series

Microcontrollers Cypress: CY8C2xxxx

Microcontrollers Elan: EM78Pxxx, EM6xxx series

Microcontrollers EM Microelectronic: 4 and 8 bit series

Microcontrollers Microchip PICmicro: PIC10xxx, PIC12xxx, PIC16xxx, PIC17xxx, PIC18xxXx,

PIC24xxx, dsPIC, PIC32xxx series

Microcontrollers Mitsubishi: M16C

¢ Microcontrollers Motorola/Freescale: HC08 (both 5-wire, All-wire), HC11, HC12, HCSO08,

S12, S12X, MC56F, MCF52, Kinetis K series

Microcontrollers Nordic Semiconductor: nRF24LExxx, nRF24LUxxx, nRF315xx Flash and

OTP series

o Microcontrollers NXP (Philips) ARM7: LPC2xxx, MPT6xx series

e Microcontrollers NXP (Philips) ARM Cortex-Mx: LPC11xx, LPC11Cxx, LPC11Dxx,

LPC11Uxx, LPC12xx, LPC12Dxx, LPC13xx, LPC17xx, LPC11Axx, LPC11Exx, LPC11xxLV,

LPC18xx, LPC43xx, LPC8xx, EM7xX, series

Microcontrollers NEC: uPD7xxx series

Microcontrollers Philips (NXP): LPCxx series, 89xxx series

Microcontrollers Renesas: R8C/Tiny series, uPD7xxx series

Microcontrollers Realtek, M-Square

Microcontrollers Samsung: ICPZBSxxx series

Microcontrollers Scenix (Ubicom): SXxxx series

Microcontrollers Silicon Laboratories(Energy Micro): EFM32Gxx, EFM32GGxx, EFM32LGxX,

EFM32TGxx, EFM32W Gxx series

Microcontrollers STM (ex SGS-Thomson): ST6xx, ST7xx, ST10xx, STR7xx, STRO9xx,

STM32F/L/W, STMB8A/S/L series, SPC5 (Power Architecture)

e Microcontrollers Silicon Laboratories(Cygnal): C8051 series

e Microcontrollers & Programmable System Memory STMicroelectronics: uPSD, PSD series

e Microcontrollers Tl: MSP430 series (both JTAG and BSL), MSC12xxx series, CC430 series,

LMA4F series, TM4C series

Microcontrollers ZILOG: Z8Fxxxx, ZBFMCxxxxx, Z16Fxxxx series, ZLF645x0xx

Various PLD (also by Jam/VME/SVF/STAPL/... Player/JTAG support):

Altera: MAX 3000A, MAX 7000A, MAX 7000B, MAX 7000S, MAX 9000, MAX II/G/Z, MAX V

¢ Xilinx: XC9500, XC9500XL, XC9500XV, CoolRunner XPLA3, CoolRunner-II

e PLD Lattice: ispGAL22xV10x, iSpLSIIXXXEA, ispLSI2xxxE, ispLSI2xxxV, ispLSI2xxxVE,
iISPLSI2XXXVL, M4-xx/xX, MALV-xx/xX, M4A3-xx/xx, MA4AA5-xx/xx, LC4xxxBIC/VIZCIZE,
ispCLOCK, Power Manager/ll, ProcessorPM

e FPGA: Microsemi(Actel): ProASIC3, IGLOO, Fusion, ProASICplus, SmartFusion

e FPGA: Lattice: MachXO, MachX0O2, LatticeXP, LatticeXP2, ispXPGA

Note:

e 2708 memories (*1) are programmed by using 2708 additional module

e Devices marked *2 are obsolete and some of them might require also PLD-1 additional
module for programming

e The complicated devices with laborious implementation might belongs to the 'Paid ISP
support' category

.|
29

Elnec s.r. 0.

o For all supported devices see actual Device list on www.elnec.com.
Package support

e support devices in DIP into socket of the programmer

e package support includes DIP, SDIP, PLCC, JLCC, SOIC, SOP, PSOP, SSOP, TSOP,
TSOPII, TSSOP, QFP, PQFP, TQFP, VQFP, QFN (MLF), SON, BGA, EBGA, FBGA,
VFBGA, UBGA, FTBGA, LAP, CSP, SCSP etc. devices in non-DIP packages up to 48 pins
are supported by universal programming adapters - if it is technically possible on the
BeeHive204 programmer. That means if reliability of operations when used universal
programming adapter is below industrial standard, the specialized programming adapters
are necessary to use.

e programmer is compatible with many third-party adapters for non-DIP support

Programming speed

Note:

e It is important to know, we always use random numbers data pattern for programming speed
testing. Some our competitors use "sparse" data pattern, where only few non-blank data are
programmed or are there are used data with only few O bits (FE, EF, etc.). This cheating
approach can "decrease" programming time considerable. If you plan to compare, always
ask which pattern they use.

e The programming speed depends on PC speed only slightly, of course at condition the CPU
usage is below 100%.

¢ If the programmer attached to PC through LPT port, the programming of high-capacity
memories will take considerable longer time.

Device Size [bits] Operation Time

K8P6415UQB (parallel NOR Flash) 400100hx16 bit (64 Mega) | programming and verify 13 sec
MT29F1G08ABAEAWRP (parallel NAND Flash) *2 8400000Hx8 (1 Giga) programming and verify 51 sec
THGBM3G4D1FBAIG (eMMC NAND Flash) *2 2048 MB x8 (16 Giga) programming *1 363 sec
QB25F640S33 (serial Flash) 800200Hx8 (64 Mega) programming and verify 30.7 sec
AT89C51RD2 (microcontroller) 10000Hx8 programming and verify 14.4 sec
PIC32MX360F512L (microcontroller) 80000Hx8 programming and verify 8.9 sec
Conditions: Intel Core2Duo 6300 1.86GHz, 1GB RAM, USB 2.0 HS, Windows XP, software

PG4UW v3.03.
*1 Implementation is the same as in card readers. Verification of programming is

performs internal controller. Internal controller confirms the proper programming
using status register.
*2 The programming time is for TurboMode active.

SOFTWARE

¢ Algorithms: only manufacturer approved or certified algorithms are used.

¢ Algorithm updates: software updates are available regularly, approx. every 4 weeks, free of
charge (Internet download). OnDemand version of software is available for highly needed
chips support and/or bugs fixes. Available nearly daily.

e Main features: revision history, session logging, on-line help, device and algorithm
information

30

= /\7E BeeHive204

Device operations

e standard:
intelligent device selection by device type, manufacturer or typed fragment of part name

e automatic ID-based selection of EPROM/Flash EPROM

¢ blank check, read, verify

e program

e erase

o configuration and security bit program

o illegal bit test

e checksum

e interpret the Jam Standard Test and Programming Language (STAPL), JEDEC standard

JESD-71

e interpret the VME files compressed binary variation of SVF files

e security

e insertion test
e contact check
¢ |D byte check
e special
¢ production mode (automatic start immediately after device insertion)
e lot of serialization modes (more type of incremental modes, from-fle mode, custom
generator mode)
o statistic
¢ count-down mode

Buffer operations

o view/edit, find/replace

o fill/copy, move, byte swap, word/dword split
e checksum (byte, word)

e print

File load/save

¢ no download time because programmer is PC controlled
¢ automatic file type identification/recognition

Supported file formats

¢ unformatted (raw) binary

e HEX: Intel, Intel EXT, Motorola S-record, MOS, Exormax, Tektronix, ASCII-SPACE-HEX,
ASCII HEX, Renesas Consolidated HEX

e Altera POF, JEDEC (ver. 3.0.A), e.g. from ABEL, CUPL, PALASM, TANGO PLD, OrCAD
PLD, PLD Designer ISDATA, etc.

¢ JAM (JEDEC STAPL Format), JBC (Jam STAPL Byte Code), STAPL (STAPL File) JEDEC
standard JESD-71

e VME (ispVME file VME2.0/VME3.0)

e SVF (Serial Vector Format revision E)

e STP (Actel STAPL file)

31

Elnec s.r. 0.

GENERAL

e operating voltage 100-240V AC rated, 90-264 VAC max., 47-63 Hz
e power consumption max. 60W active

o dimensions 361x234x56 mm (14.2x9.2x2.2 inch)

¢ weight (programmer) 3.5kg (7.7 Ib)

e operating temperature 5°C + 40°C (41°F + 104°F)

e operating humidity 20%...80%, non condensing

32

A0

= BeeProg2 / BeeProg2C
ELNE 9 9

BeeProg2 / BeeProg2C

Elnec s.r. 0.

Introduction

BeeProg2 is an extremely fast universal USB/LPT interfaced universal programmer built to
meet the strong demand of the small manufacturing and developer's community for the fast
and reliable universal programmer.

BeeProg2C is a cost effective version of BeeProg2 programmer (without some special
devices and LPT port interface). If you need program some of the mentioned devices, please
take a look at BeeProg2 programmer.

BeeProg2 / BeeProg2C supports all kinds of types and silicon technologies of today and
tomorrow programmable devices without family-specific module. You have freedom to choose
the optimal device for your design. Using built-in in-circuit serial programming (ISP) connector,
the programmer is able to program ISP capable chips in circuit.

BeeProg2 / BeeProg2C aren't only programmer, but also tester of TTL/CMOS logic ICs and
memories. Furthermore, it allows generating user-definable test pattern sequences.

BeeProg2 / BeeProg2C provides very competitive price coupled with excellent hardware
design for reliable programming. It is probably best "value for money" programmer in this
class.

BeeProg2 / BeeProg2C provides extremely fast programming due to high-speed FPGA
driven hardware and execution of time-critical routines inside of the programmer. As a result,
when used in manually operated production this one-socket-programmer in most cases waits
for an operator.

BeeProg2 / BeeProg2C interfaces with the IBM PC compatible personal computers, running
MS Windows OS, through USB (2.0 high speed) port or any standard parallel (printer) port
(except BeeProg2C). Support of both USB/LPT port connections gives you the choice to
connect the BeeProg2 programmer to any PC, from latest notebook to older desktop without
USB port. BeeProg2C has only USB interface but after upgrade to BeeProg2, also high-speed
IEEE 1284 (ECP/EPP) printer-port (LPT) interface is available (LPT port connection usage is
disabled in software only).

BeeProg2 / BeeProg2C provides a banana jack for ESD wrist straps connection to easy-to-
implement the ESD protection control and also other banana jack for earth wire.

BeeProg2 / BeeProg2C has a FPGA based totally reconfigurable 48 powerful TTL pindrivers,
which provide H/L/pull_up/pull_down and read capability for each pin of socket. Advanced
pindrivers incorporate high-quality high-speed circuitry to deliver signals without overshoot or
ground bounce for all supported devices. Improved pindrivers operate down to 1.8V so you'll
be ready to program the full range of today's advanced low-voltage devices.

BeeProg2 / BeeProg2C performs device insertion test based on the check of proper signal
path between the programmer and programmed device before it programs each device. In
dependence on programming configuration it identifies missed or poor contact between
programmed device and the ZIF socket of the programming adapter (or the programmer
directly), missed or poor contact between the programming adapter and the programmer and
it's also able to indicate wrong position of device in the ZIF socket of the programmer / the

|
34

12
r BeeProg2 / BeeProg2C
4&/\/5@ 9 9

programming adapter (moved, rotated, backward oriented). These capabilities, supported by
overcurrent protection and signature-byte check help prevent chip damage due to operator
error.

The selftest capability allows running diagnostic part of software to thoroughly check the health
of the programmer.

Built-in protection circuits eliminate damage of programmer and/or programmed device due
environment or operator failure. All the inputs of the BeeProg2 / BeeProg2C programmer,
including the ZIF socket, ISP connector, connection to PC and power supply input, are
protected against ESD up to 15kV.

When programming specification require, the BeeProg2 / BeeProg2C programmer performs
programming verification at the marginal level of supply voltage, which, obviously, improves
programming yield, and guarantees long data retention.

Various programming adapters are available to handle device in PLCC, JLCC, SOIC, SDIP,
SOP, PSOP, SSOP, TSOP, TSOPII, TSSOP, QFP, PQFP, TQFP, VQFP, QFN (MLF), SON,
BGA, EBGA, FBGA, VFBGA, UBGA, FTBGA, LAP, CSP, SCSP, LQFP, MQFP, HVQFN, QLP,
QIP and other packages..

BeeProg2 / BeeProg2C programmer is driven by an easy-to-use control program with pull-
down menu, hot keys and on-line help. Selecting of device is performed by its class, by
manufacturer or simply by typing a fragment of vendor name and/or part number.

Standard device-related commands (read, blank check, program, verify, erase) are boosted
by some test functions (insertion test, signature-byte check), and some special functions
(autoincrement, production mode - start immediately after insertion of chip into socket).

All known data formats are supported. Automatic file format detection and conversion during
load of file.

The rich-featured autoincrement function enables one to assign individual serial numbers to
each programmed device - or simply increments a serial number, or the function enables one
to read serial numbers or any programmed device identification signatures from a file.

The software also provides a lot of information about programmed device. As a special, the
drawings of all available packages, explanation of chip labeling (the meaning of prefixes
and suffixes at the chips) for each supported chip are provided.

The software provides full information for ISP implementation: Description of ISP connector
pins for currently selected chip, recommended target design around in-circuit programmed chip
and other necessary information.

The remote control feature allows being PG4UW software flow controlled by other application
— either using .BAT file commands or using DLL file. DLL file, examples (C/PAS/VBASIC/.NET)
and manual are part of standard software delivery.

Jam files of JEDEC standard JESD-71 are interpreted by Jam Player. Jam files are
generated by design software which is provided by manufacturer of respective programmable
device. Chips are programmed in ZIF or through ISP connector (IEEE 1149.1 Joint Test Action
Group (JTAG) interface).

.|
35

Elnec s.r. 0.

VME files are interpreted by VME Player. SVF (Serial Vector Format) files are interpreted by
SVF Player. VME file is a compressed binary variation of SVF file and both contains high-level
IEEE 1149.1 bus operations. SVF and VME files are generated by design software which is
provided by manufacturer of respective programmable device. Chips are programmed in ZIF or
through ISP connector (IEEE 1149.1 Joint Test Action Group (JTAG) interface). Multiple
devices are possible to program and test via JTAG chain: JTAG chain (ISP-Jam) or JTAG
chain (ISP-VME).

Attaching of more BeeProg2 / BeeProg2C programmers to the same PC (through USB port) is
achieved a powerful multiprogramming system, which support as many chips, as are
supported by BeeProg2 / BeeProg2C programmer and without obvious decreasing of
programming speed. It is important to know, there is a concurrent multiprogramming - each
programmer works independently and each programmer can program different chip, if
necessary.

It is important to remember that in most cases new devices require only a software update
due to the BeeProg2 / BeeProg2C is truly universal programmer. With our prompt service you
can have new devices can be added to the current list within hours! See AIgOR (Algorithm On
Request) service and OnDemand software for details. This service is almost in all cases free.
Please note that we can ask customer to share the cost if development cost is too high.

Combination of extensive stock, flexible manufacturing and shipping of Elnec products by
world class carriers (like DHL) warrants customers very fast and secure delivery of ordered
Elnec products. Products ordered before 10 a.m. (CET) will be dispatched the same working
day (if products are in stock and the payment is done by online payment (CardPay, PayPal).

Advanced design including protection circuits, original brand components and careful
manufacturing and burning allows us to provide a three-year warranty on parts and
workmanship of the programmer BeeProg2 / BeeProg2C (limited 25,000-cycle warranty on ZIF
socket). Elnec provides free shipping of programmer repaired under warranty back to customer
world wide. Warranty is valid from the date of purchase. Preferential handling of repair
requests ensures registration of the product that should be done within 60 days from the date
of purchase.

36

ﬁﬁé@

BeeProg2 / BeeProg2C
ELNE 9 9

BeeProg2/ BeeProg2C elements

48 pin ZIF socket

work result LEDs

power/sleep LED

YES! Button

ISP connector

power switch

"GND" connector can be used for grounding of the programmer
"ESD wrist strap" connector is place for attaching of ESD wrist strap

NogohswbhpE

8. Power supply connector

9. LPT connector for PC <> BeeProg2 communication cable. For BeeProg2C after upgrade to
BeeProg2

10. USB connector for PC <> BeeProg2 / BeeProg2C communication cable

8 9 10

AC IN
100 - 240 V
~ 50 - 60 Hz

Elnec s.r. 0.

yid

Connecting BeeProg2 / BeeProg2C to the PC

Using USB port

Recommendation for connecting programmer to PC:

1. make ground connection between programmer and PC or other ground
2. connect programmer with PC via USB cable

3. connect power supply to programmer and turn on by power switch “6”.
4. run PG4UW control program and connect programmer

Using LPT port

Switch off PC and programmer. Insert the LPT communication cable to a free printer port on
your PC. If your computer is equipped with only one printer port, substitute the programmer
cable for the printer cable. Connect the opposite cable end to the programmer. Screw on both
connectors to counter-connectors. This is very important. It may be uncomfortable to switch
between printer cable and programmer cable, though it is not recommended to operate the
BeeProg2 programmer through a mechanical printer switch. Use of an electronic printer switch
is impossible. But you can install a second multi-l/O in your computer, thus obtaining a
supplementary printer port, says LPT2. So your printer may remain on LPT1 while the
programmer on LPT2.

Switch on the PC.

Connect the connector “8” to a mains plug using attached cable and turn on by power switch
“6. At this time all 'work result' LEDs (and 'POWER' LED) light up successive and then switch
off. Once the POWER LED lights with low brightness then the BeeProg2 programmer is ready
to run.

Next run the control program for BeeProg2.

Caution! If you don't want to switch off your PC when connecting the BeeProg2, proceed as

follows:

e When connecting the programmer to the PC: FIRST insert the communications cable and
THEN the power-supply connector.

e When disconnecting the programmer from the PC: FIRST disconnect the power-supply
connector and THEN the communication cable.

From BeeProg2 point of view the connecting and disconnecting sequence is irrelevant.
Protection circuits on all programmer inputs keep it safe. But think of your PC please.

Problems related to the BeeProg2 / BeeProg2C & PC
interconnection, and their removing

If you have any problems with BeeProg2 / BeeProg2C < PC interconnection, see section
Common notes please.

38

2
r BeeProg2 / BeeProg2C
4&/\/5@ 9 9

Manipulation with the programmed device

After selection of desired device for your work, you can insert into the open ZIF socket (the
lever is up) and close socket (the lever is down). The correct orientation of the programmed
device in ZIF socket is shown on the picture near ZIF socket on the programmer's cover. The
programmed device is necessary to insert into the socket also to remove from the socket when
LED BUSY light off.

Note: Programmer's protection electronics protect the target device and the programmer itself
against either short or long-term power failures and, partly, also against a PC failure. However,
it is not possible to grant the integrity of the target device due to incorrect, user-selected
programming parameters. Target device may be not destroyed by forced interruption of the
control program (reset or switch-off PC), by removing the physical connection to the
programmer, but the content of actually programmed cell may remains undefined. Don't unplug
the target device from the ZIF socket during work with device (LED BUSY shine).

In-system serial programming by BeeProg2/
BeeProg2C

For general definition, recommendation and direction about ISP see section Common notes /
ISP please.

Description of ISP connector
As ISP connector inside programmer is used 2 rows, 2,54mm (0.1") pitch connector with 20
positions like 5103310-5 from TE connectivity or other compatible connector.

2 4 6 8 1012 14 16 18 20
L R M Rl it i e |

1 3 5 7 9 11 .13 15 17 19
[O Y R M e B R R

Front view at ISP connector of programmer.

39

Elnec s.r. 0.

| pins 3,5,7,9, 11, 13 of ISP connector | ;_ pin 14 of ISP connector -:
A e |
| drivers in programmer pin of ISP I drivers in programmer pin of ISP
| comnectar | | CC comnector |
HIL RAL
| I || I
I F‘“‘J |l RB2 |
| Read I | RB1 |
| & !
| Pull-up/ | | YES! |
Pull-down | |
| ! 1
| | GND I
I ____________ P —

pins 15, 16 of ISP connector |
C) D)

pin of ISP pin of ISP

I

| I

| M |

| 1 connector RDL connector |

HIL
g—)>——|:I—— T

| RC1 l

| Float GND |
I
I
I
I
I

| Read E)
pin of ISP
| CE1, connector

Pull-up/
Pull-down RC2

RA1 180R, RA2 1k3, RA3 22k,
RB1 10k, RB2 10Kk,
CC1 1n, RC1 1k3, RC2 22k,
RD1 22k, CE1 1n, RE1 1k3,

Comment to above picture:

= B) Pin 14 is an input pin. Pulse to logical L has same function as pressing Yes! button on the
top of programmer,

= C) Connection of pins 15 and 16 when are configured as logical signal needed for ISP
programming,

= D) E) When pins 15 and 16 are configured as status of LED OK and LED ERROR than are
output pins,

= D) before first action with desired ISP device,

= E) After first action with desired ISP device.

Notes:

e When LED OK or LED ERROR ON (shine), this status is presented as logical H, level of H is
1,8V - 5V depend on H level of desired ISP device.

e When LED OK or LED ERROR OFF (not shine), this status is presented as logical L, level of
Lis OV -0,4V.

e The above mentioned values are provided to understand (and also to exactly calculate) the
value of resistors, which isolate (separate) the programmed chip and target system.

e These signals may stay unconnected, if you don't use them.

Specification of ISP connector pins depends on the device, which you want to program. You
can find it in the control SW for programmer (PG4UW), menu Device / Device Info (Ctrl+F1).

.|
40

,’?ﬁ.@

BeeProg2 / BeeProg2C
ELNE 9 9

Be aware, the ISP programming way of respective device must be selected. It is indicated by

(ISP) suffix after name of selected device.

These specifications correspond with application notes published of device manufacturers.

Used application notes you may find on www.elnec.com, section Support / Application Notes.

Notes:

e Pin no. 1 is signed by triangle scratch on ISP cable connectors.

e As ISP connectors at ISP cable are used 2 rows, 2,54mm (0.1") pitch connector with 20
positions like 09185207813 from Harting or other compatible connector.

BeeProg2 / BeeProg2C ISP cable

Warnings:

e When you use BeeProg2 / BeeProg2C as ISP programmer, don't insert device to ZIF
socket.

¢ When you program devices in ZIF socket, don’t insert ISP cable to ISP connector.

e Use only attached ISP cable. When you use other ISP cable (other material, length...),
programming may occur unreliable.

e BeeProg2/ BeeProg2C can supply programmed device (pin 1 of ISP connector) and target
system (pins 19 and 20 of ISP connector) with limitation (see Technical specification / ISP
connector).

e BeeProg2 / BeeProg2C apply programming voltage to target device and checks his value
(target system can modify programming voltage). If the programming voltage is different as
expected, no action with target device will be executed.

Multiprogramming by BeeProg2 / BeeProg2C

During installation of PG4UW at Select Additional Tasks window you check, if is allowed install
BeeProg2 / BeeProg2C multiprogramming control support.

For start of BeeProg2 / BeeProg2C multiprogramming is necessary run special control
program pg4uwmc.exe. At this program user assign BeeProg2 / BeeProg2C to control
programs, may load projects for all BeeProg2 / BeeProg2C and run PG4UW for every
connected and assigned BeeProg2 / BeeProg2C.

Selftest and calibration check

If you feel that your programmer does not react according to your expectation, please run the
programmer (ISP connector) selftest using Diagnostic pod (Diagnostic pod for ISP connectors
#2), enclosed in the standard delivery package.

41

Elnec s.r. 0.

Selftest of programmer

e Insert 48 pins diagnostic pod - type | into ZIF socket of the programmer. 48 pins
diagnostic pod - type | must be inserted as 48 pins device.

¢ Run selftest of programmer in PG4UW (menu Programmer / Selftest).

Selftest of ISP connector
¢ Insert Diagnostic pod for ISP connectors #2 into ZIF socket of the programmer.
Diagnostic pod for ISP connectors #2 must be inserted as 48 pins device.
¢ Interconnect 20 pins connector of Diagnostic pod for ISP connectors #2 with an ISP
connector of the programmer with an ISP cable, included in delivery programmer package.
Be sure that pins are interconnected properly (i.e. 1-1, 2-2 ... 20-20).
¢ Run selftest of ISP connector in PG4UW (menu Programmer / Selftest ISP connector...).

Calibration test
e Insert 48 Pins Calibration test pod, Type | into ZIF socket of the programmer. 48 Pins
Calibration test pod, Type | must be inserted as 48 pins device.
¢ Run calibration test of programmer in PG4UW (menu Programmer / Calibration test).

42

2
r BeeProg2 / BeeProg2C
4&/\/5@ 9 9

Technical specification

HARDWARE

Base unit, DACs

e USB 2.0 high-speed compatible port, up to 480 Mb/s transfer rate

o FPGA based IEEE 1284 slave printer port, up to 1MB/s transfer rate (except BeeProg2C)
¢ on-board intelligence: powerful microprocessor and FPGA based state machine

« three D/A converters for VCCP, VPP1, and VPP2, controllable rise and fall time

e VCCP range 0...8V/1A

e VPP1, VPP2 range 0...26V/1A

¢ selftest capability

e protection against surge and ESD on power supply input, parallel port connection

¢ banana jack for ESD wrist straps connection

¢ banana jack for connection to ground

Socket, pindriver

e 48-pin DIL ZIF (Zero Insertion Force) socket accepts both 300/600 mil devices up to 48-pin
e pindrivers: 48 universal

e VCCP /VPP1/VPP2 can be connected to each pin

» perfect ground for each pin

o FPGA based TTL driver provides H, L, CLK, pull-up, pull-down on all pindriver pins

¢ analog pindriver output level selectable from 1.8 V up to 26V

e current limitation, overcurrent shutdown, power failure shutdown

e ESD protection on each pin of socket (IEC1000-4-2: 15kV air, 8kV contact)

e continuity test: each pin is tested before every programming operation

ISP connector

e 20-pin male type with miss insertion lock

e 6 TTL pindrivers, provides H, L, CLK, pull-up, pull-down; level H selectable from 1.8V up to
5V to handle all (low-voltage including) devices.

¢ 1x VCCP voltage (range 2V...7V/100mA), can be applied to two pins

e programmed chip voltage (VCCP) with both source/sink capability and voltage sense

¢ and 1x VPP voltage (range 2V...25V/50mA), can be applied to six pins

e Target system power supply voltage (range 2V...6V/250mA)

e ESD protection on each pin of ISP connector (IEC1000-4-2: 15kV air, 8kV contact)

¢ Only for ISP device: two output signals, which indicate state of work result = LED OK and
LED Error (active level: min 1.8V)

e input signal, switch YES! equivalent (active level: max 0.8V)

43

Elnec s.r. 0.

DEVICE SUPPORT

Programmer, in ZIF socket

e NAND FLASH: Samsung K9xxx, KFxxx, SK Hynix (ex Hynix) HY27xxx, H27xxx, Toshiba
TC58xxx, TH58xxx, Micron MT29Fxxx, (ex Numonyx ex STM) NANDxxx, Spansion
S30Mxxx, S34xxx, 3D-Plus 3DFNxxx, ATO Solution AFNDxxx, Fidelix FMNDxxx, Eon
Silicon Sol. EN27xxx, ESMT F59xxx, LBA-NAND Toshiba THGVNxxx, Macronix MX30xxx,
MX60xxx, Winbond W29Nxxx
serial NAND FLASH: Micron MT29Fxxx, GigaDevice GD5Fxxx, Winbond W25Nxxx, ESMT
F50xxx, ATO Solution ATO25xxx, All-Flash AFAxxx, AFSxxx, Macronix MX35xxx
eMMC: Hynix H26Mxxxxxxxx, Kingston KE44B-xxxx/xxx, Micron MTFCxxxxxx, Numonyx
NANDxxxxxxxx, Phison PSM4A11-xx, Samsung KLMxxxxxxx, SanDisk SDINxxx-xx, Toshiba
THGBMXXXXXXXXXX
eMCP: eMMC+RAM
Memory Cards: MMC, SD, SDHC, SDXC
Multi-chip devices: NAND+RAM, NOR+RAM, NOR+NOR+RAM, NAND+NOR+RAM
Serial Flash: standard SPI, high performance Dual I/O SPI and Quad /O SPI (25Bxxx,
25Dxxx, 25Exxx, 25FxxX, 25Lxxx, 25Mxxx, 25PxxX, 25QxxX, 25SxxX, 25Txxx, 25UxxXx,
25Vxxx, 25Wxxx, 25XxxX, 26Vxxx, 45PExx, MX66Lxxx, S7TOFLxxx), DataFlash (AT45Dxxx,
AT26DxxX)
parallel NOR Flash: 28Fxxx, 29CxxX, 29Fxxx, 29GLxxx, 29BVxxx, 29LVxxx, 29WXxxXx,
49Fxxx series, Samsung's K8Fxxxx, K8Cxxxx, K8Sxxxx, KBPxxxx series, ...
EEPROM: NMOS/CMOS, 28xxx, 28Cxxx, 27EExxx series, 3D Plus 3DEEXXXXXXXX
mDOC H3: SanDisk (ex M-Systems) SDED5xxx, SDED7xxx, MD2533xxx, MD2534xxx,
Hynix HY23xxx
FRAM: Ramtron
MRAM: Everspin MRxxxxx8X, 3D Plus 3DMRXXXXXXXX
NV RAM: Dallas DSxxx, SGS/Inmos MKxxx, SIMTEK STKxxx, XICOR 2xxx, ZMD U63x
series
Serial E(E)PROM: 11LCxxx, 24CxxX, 24Fxxx, 25CxxX, 30T SExxxX, 34CxxX, 34T Sxx, 59CxxXx,
85xxx, 93Cxxx, NVM3060, MDAxxx series, full support for LV series, AT88SCxxx
Serial FRAM: Cypress(Ramtron): FM24xxxxxx, FM25xxxxxx, Fujitsu: MB85RCxxxX,
MBB85RSxxxx, Lapis(OKI, Rohm): MR44xxxxx, MR45xxxxx
Serial MRAM: Everspin MH20xxx, MH25xxx
Configuration (EE)PROM: XCFxxx, XC17xxxx, XC18Vxxx, EPCxxx, EPCSxxx, AT17xxx,
AT18Fxxx, 37LVxx
1-Wire E(E)PROM: DS1xxx, DS2xxx
PLD Altera: MAX 3000A, MAX 7000A, MAX 7000B, MAX 7000S, MAX7000AE, MAX Il/G/Z,
MAX V
PLD Lattice: ispGAL22V10x, ispLSI1xxx, iSpLSIIXxXEA, ispLSI2xxx, iSpLSI2xxxA,
iISPLSI2XXXE, ispLSI2xxxV, ispLSI2xxxVE, ispLSI2xxxVL, LC4xxxB/C/INV/ZCIZE, MA4-xx/xx,
M4A3-xx/xx, MAA5-xx/xx, MALV-xx/xx, ispCLOCK, Power Manager/Il, ProcessorPM
PLD: Xilinx: XC9500, XC9500XL, XC9500XV, CoolRunner XPLA3, CoolRunner-II
SPLD/CPLD series: AMD, AMI, Atmel, Cypress, Gould, ICT, Lattice, National Semicond.,
Philips, STMicroelectronics, Tl (TMS), Vantis, VLSI
FPGA: Microsemi(Actel): ProASIC3, IGLOO, Fusion, ProASICplus, SmartFusion
FPGA: Lattice: MachXO, MachXO2, LatticeXP, LatticeXP2, ispXPGA
FPGA: Xilinx: Spartan-3AN
Clocks: TI(TMS), Cypress

.|
44

12
r BeeProg2 / BeeProg2C
4&/\/5@ 9 9

e Special chips: Atmel Tire Pressure Monitoring ATA6285N, ATA6286N; PWM controllers:
Zilker Labs, Analog Devices; Multi-Phase ICs: IR(Chil Semiconductor); Gamma buffers:
AUO, Maxim, TI, ...

e Microcontrollers MCS51 series: 87CxxX, 87LVxX, 89Cxxx, 89Sxxx, 89Fxxx, 89LVxxX,
89LSxxx, 89LPxxx, 89Exxx, 89Lxxx, all manufacturers, Philips LPC series

e Microcontrollers Intel 196 series: 87C196 KB/KC/KD/KT/KRY/...

e Microcontrollers Atmel ARM. AT91SAM7Sxx, AT91SAM7LxX, AT91SAM7XXX,

AT91SAM7XCxx, AT91SAM7SEXxx series;

Microcontrollers Atmel ARM9: AT91SAM9xxXx series;

e Microcontrollers ARM Cortex-MO+: ATSAMCxxx, ATSAMRXXX series

e Microcontrollers ARM Cortex-M3: ATSAM3Axxx, ATSAM3Uxxx, ATSAM3NXxX,
ATSAM3Sxxx, ATSAMD20, ATSAM3Xxxx series

e Microcontrollers ARM Cortex-M4: ATSAM4Exxx, ATSAMA4Lxxx, ATSAMANXXX,
ATSAMASxxx, ATSAMGXxxx series

e Microcontrollers Atmel AVR 8bit/16bit: AT90Sxxxx, AT90pwm, AT90can, AT90usb, ATtiny,

ATmega, ATxmega series

Microcontrollers Atmel AVR32: AT32UC3xxxx, ATUCxxxD3/D4/L3U/L4U series

Microcontrollers Tl (Chipcon): CC11xx, CC24xx, CC25xx, CC85xx series

Microcontrollers Coreriver: Atom 1.0, MiDAS1.0, 1.1, 2.0, 2.1, 2.2, 3.0 series

Microcontrollers Cypress: CY7CxxxxX, CY8CXXXXX

Microcontrollers ELAN: EM78Pxxx

Microcontrollers EPSON: S1C17 series

Microcontrollers Explore Microelectronic: EPF01x, EPF02x series

Microcontrollers Generalplus: GPM8Fxxx series

Microcontrollers GreenPeak: GPxxx series

Microcontrollers Infineon(Siemens): XC800, C500, XC166, C166 series

Microcontrollers MDT 1xxx and 2xxx series

Microcontrollers Megawin: MG87xxx, MPC82xxx series

Microcontrollers Microchip PICmicro: PIC10xxx, PIC12xxx, PIC16xxx, PIC17CxxX,

PIC18xxx, PIC24xxx, dsPIC, PIC32xxx series

Microcontrollers Motorola/Freescale: HC05, HC08, HC11, HC12, HCS08, RS08, S12, S12X,

S12 MagniV, MC56F, MCF51, MCF52 series, Kinetis (K,L,M,V,E,EA), Qorivva/5xxx Power

Architecture

e Microcontrollers Myson MTV2xx, 3xx, 4xX, 5xx, CS89xx series

Microcontrollers National: COP8xxx series

¢ Microcontrollers NEC: uPD70Fxxx, uPD78Fxxx series

Microcontrollers Novatek: NT68xxx series

¢ Microcontrollers Nordic Semiconductor: nRF24LExxx, nRF24LUxxx, nRF315xx, nRF51xxx

Flash and OTP series

Microcontrollers Nuvoton ARM Cortex-Mx: NUC1xx, NUC2xx, M0O5x, Mini51, Nanolxx series

Microcontrollers Nuvoton (Winbond): N79xxx, W77xxx, W78xxx, W79xxx, W83xxx series

Microcontrollers NXP (Philips) ARM Cortex-Mx: LPC11xx, LPC11Cxx, LPC11Dx,

LPC11Uxx, LPC12xx, LPC12Dxx, LPC13xx, LPC17xx, LPC11Axx, LPC11Exx, LPC11xxLV,

LPC18xx, LPC43xx, LPC8xx, EM7xx, series

Microcontrollers NXP (Philips) UOC series: UOCIII, UOC-TOP, UOC-Fighter (TDAL1Xxxx)

series

o Microcontrollers NXP (Philips) ARM7: LPC2xxx, MPT6xx, PCD807xx, SAF7780xxx series

¢ Microcontrollers NXP (Philips) ARM9: LPC31xx series

Microcontrollers Pasat: TinyModule DIL40, DIL50 series

.|
45

Elnec s.r. 0.

e Microcontrollers Scenix (Ubicom): SXxxx series
e Microcontrollers Syntek: STK6xxx series
e Microcontrollers Renesas: R8C/Tiny, RX, uPD70Fxxx, uPD78Fxxx, RH850, RL78, R32C
series
e Microcontrollers SyncMOS: SM39xxx, SM59xxx, SM73xxx, SM79xxx, SM89xxx series
e Microcontrollers & Programmable System Memory STMicroelectronics: uPSD, PSD series
e Microcontrollers STM (ex SGS-Thomson): ST6xx, ST7xx, ST10xx, STR7xx, STRO9xx,
STM32F/L/W, STMBA/S/L series, SPC5 (Power Architecture)
e Microcontrollers Silicon Laboratories(Cygnal): C8051 series
¢ Microcontrollers Silicon Laboratories(Energy Micro): EFM32Gxx, EFM32GGxx, EFM32LGxX,
EFM32TGxx, EFM32W Gxx series
* Microcontrollers Silicon Laboratories: SiM3Cxxx, SIM3Lxxx, SiM3Uxxx series
e Microcontrollers Texas Instruments: MSP430 series, MSC12xx series, TMS320F series,
CC430 series,
Microcontrollers Texas Instruments (ex Luminary Micro): LM3Sxxx, LM3Sxxxx series,
LM4Fxxxx series, TM4C series
Microcontrollers ZILOG: Z86/Z89xxx and Z8Fxxxx, Z8FMCxxxxX, Z16Fxxxx, ZGP323XXXXXX,
ZLFB45xxxxxXX, ZLP12840xxxxX, ZLP323XXXXXXX series
Microcontrollers other: EM Microelectronic, Spansion(Fujitsu), Goal Semiconductor, Hitachi,
Holtek, Novatek, Macronix, Princeton, Winbond, Samsung, Toshiba, Mitsubishi, Realtek, M-
Square, ASP, Coreriver, Gencore, EXODUS Microelectronic, Topro, TinyARM, VersaChips,
SunplusIT, M-Square, QIXIN, Signetic, Tekmos, Weltrend, Amic, Cyrod Technologies,
Ember, Ramtron, Nordic Semiconductor, Samsung, ABOV Semiconductor...
e PLD: Bipolar PALxxx **
Only for BeeProg2 programmer
« NMOS/CMOS, 2708+
¢ PROM: AMD, Harris, National, Philips/Signetics, Tesla, Tl
o Microcontrollers 48 series: 87x41, 87x42, 87x48, 87x49, 87x50 series
e Microcontrollers 51 series: 87xx
Programmer, through ISP connector
e Serial E(E)PROM: IIC series, MW series, SPI series, KEELOQ series, PLD configuration
memories, UN I/O series
1-Wire E(E)PROM: DS1xxx, DS2xxx
o Serial Flash: standard SPI (25xxx), DataFlash (AT45Dxxx, AT26Dxxx)
Serial FRAM: Cypress(Ramtron): FM24xxxxxx, FM25xxxxxx, Fujitsu: MB85RCxxxX,
MBB85RSxxxx, Lapis(OKI, Rohm): MR44xxxxx, MR45xxxxx
¢ Microcontrollers ARM Cortex-M0+: ATSAMCxxx series
e Microcontrollers ARM Cortex-M4: ATSAM4NXxxx, ATSAM4Sxxx series
e Microcontrollers ARM Cortex-M3: ATSAM3Axxx, = ATSAM3Uxxx, ATSAM3NXXxX,
ATSAM3Sxxx, ATSAMD20, ATSAM3Xxxx series
e Microcontrollers Atmel: AT89Cxxx, AT89Sxxx, AT89LSxxx, AT89LPxxx, AT90pwm,
AT90can, AT90usb, AT90Sxxxx, ATtiny, ATmega, ATxmega series
e Microcontrollers Atmel AVR32: AT32UC3xxxx, ATUCxxxD3/D4/L3U/L4U series
e Microcontrollers Atmel ARM7: AT91SAM7Sxx, AT91SAM7XxX, AT9LSAM7XCxX,
AT91SAM7SEXX series;
Microcontrollers Tl (Chipcon): CC11xx, CC24xx, CC25xx, CC85xx series
e Microcontrollers Cypress: CY8C2xxxx
Microcontrollers Elan: EM78Pxxx, EM6xxx series
¢ Microcontrollers EM Microelectronic: 4 and 8 bit series

L. |
46

12
r BeeProg2 / BeeProg2C
4&/\/5@ 9 9

e Microcontrollers Microchip PICmicro: PIC10xxx, PIC12xxx, PIC16xxx, PIC17xxx, PIC18xxXx,
PIC24xxx, dsPIC, PIC32xxx series

¢ Microcontrollers Mitsubishi: M16C

e Microcontrollers Motorola/Freescale: HC08 (both 5-wire, All-wire), HC11, HC12, HCSO08,

S12, S12X, MC56F, MCF52, Kinetis K series

Microcontrollers Nordic Semiconductor: nRF24LExxx, nRF24LUxxx, nRF315xx Flash and

OTP series

o Microcontrollers NXP (Philips) ARM7: LPC2xxx, MPT6xx series

e Microcontrollers NXP (Philips) ARM Cortex-Mx: LPC11xx, LPC11Cxx, LPC11Dxx,

LPC11Uxx, LPC12xx, LPC12Dxx, LPC13xx, LPC17xx, LPC11Axx, LPC11Exx, LPC11xxLV,

LPC18xx, LPC43xx, LPC8xx, EM7xX, series

Microcontrollers NEC: uPD7xxx series

Microcontrollers Philips (NXP): LPCxx series, 89xxx series

Microcontrollers Renesas: R8C/Tiny series, uPD7xxx series

Microcontrollers Realtek, M-Square

Microcontrollers Samsung: ICPZBSxxx series

Microcontrollers Scenix (Ubicom): SXxxx series

Microcontrollers Silicon Laboratories(Energy Micro): EFM32Gxx, EFM32GGxx, EFM32LGxX,

EFM32TGxx, EFM32W Gxx series

Microcontrollers STM (ex SGS-Thomson): ST6xx, ST7xx, ST10xx, STR7xx, STRO9xx,

STM32F/L/W, STMB8A/S/L series, SPC5 (Power Architecture)

e Microcontrollers Silicon Laboratories(Cygnal): C8051 series

e Microcontrollers & Programmable System Memory STMicroelectronics: uPSD, PSD series

Microcontrollers TI: MSP430 series (both JTAG and BSL), MSC12xxx series, CC430 series,

LMA4F series, TM4C series

Microcontrollers ZILOG: Z8Fxxxx, ZBFMCxxxxXx, Z16Fxxxx series, ZLF645x0xx

Various PLD (also by Jam/VME/SVF/STAPL/... Player/JTAG support):

Altera: MAX 3000A, MAX 7000A, MAX 7000B, MAX 7000S, MAX 9000, MAX II/G/Z, MAX V

Xilinx: XC9500, XC9500XL, XC9500XV, CoolRunner XPLA3, CoolRunner-I|

PLD Lattice: ispGAL22xV10x, iSpLSIIxxXEA, ispLSI2xxxE, ispLSI2xxxV, ispLSI2xxxVE,

iISPLSI2XXXVL, M4-xx/xx, MALV-xx/xX, M4A3-xx/xx, MA4AA5-xx/xx, LC4xxxBIC/VIZCIZE,

ispCLOCK, Power Manager/ll, ProcessorPM

e FPGA: Microsemi(Actel): ProASIC3, IGLOO, Fusion, ProASICplus, SmartFusion

e FPGA: Lattice: MachXO, MachX0O2, LatticeXP, LatticeXP2, ispXPGA

Notes:

e 2708 memories (*1) are programmed by using 2708 additional module

e Devices marked *2 are obsolete and some of them might require also PLD-1 additional
module for programming

e The complicated devices with laborious implementation might belongs to the 'Paid ISP
support' category

e For all supported devices see actual Device list on www.elnec.com.

C. Tester

e TTL type: 54,74 S/LS/ALS/H/HC/HCT series
¢ CMOS type: 4000, 4500 series

e static RAM: 6116 ... 624000

¢ user definable test pattern generation

Package support

e support all devices in DIP with default socket

47

Elnec s.r. 0.

e package support includes DIP, SDIP, PLCC, JLCC, SOIC, SOP, PSOP, SSOP, TSOP,
TSOPII, TSSOP, QFP, PQFP, TQFP, VQFP, QFN (MLF), SON, BGA, EBGA, FBGA,
VFBGA, UBGA, FTBGA, LAP, CSP, SCSP, LQFP, MQFP, HVQFN, QLP, QIP etc.

e Devices in non-DIP packages up to 48 pins are supported by universal programming
adapters - if it is technically possible on the BeeProg2 programmer. That means if reliability
of operations when used universal programming adapter is below industrial standard, the
specialized programming adapters are necessary to use.

e programmer is compatible with third-party adapters for non-DIP support

Programming speed

Note:

e It is important to know, we always use random numbers data pattern for programming speed
testing. Some our competitors use "sparse" data pattern, where only few non-blank data are
programmed or are there are used data with only few O bits (FE, EF, etc.). This cheating
approach can "decrease" programming time considerable. If you plan to compare, always
ask which pattern they use.

e The programming speed depends on PC speed only slightly, of course at condition the CPU
usage is below 100%.

¢ If the programmer attached to PC through LPT port, the programming of high-capacity
memories will take considerable longer time.

Device Size [bits] Operation Time

K8P6415UQB (parallel NOR Flash) 400100hx16 bit (64 Mega) | programming and verify 13 sec
MT29F1G08ABAEAWRP (parallel NAND Flash) *2 8400000Hx8 (1 Giga) programming and verify 51 sec
THGBM3G4D1FBAIG (eMMC NAND Flash) *2 2048 MB x8 (16 Giga) programming *1 363 sec
QB25F640S33 (serial Flash) 800200Hx8 (64 Mega) programming and verify 30.7 sec
AT89C51RD2 (microcontroller) 10000Hx8 programming and verify 14.4 sec
PIC32MX360F512L (microcontroller) 80000Hx8 programming and verify 8.9 sec
Conditions: Intel Core2Duo 6300 1.86GHz, 1GB RAM, USB 2.0 HS, Windows XP, software

PG4UW v3.03.

*1 Implementation is the same as in card readers. Verification of programming is performs
internal controller. Internal controller confirms the proper programming using status register.
*2 The programming time is for TurboMode active.

SOFTWARE

e Algorithms: only manufacturer approved or certified algorithms are used. Custom
algorithms are available at additional cost.

e Algorithm updates: software updates are available regularly, approx. every 4 weeks, free of
charge. OnDemand version of software is available for highly needed chips support and/or
bugs fixes. Available nearly daily.

e Main features: revision history, session logging, on-line help, device and algorithm
information

Device operations

e standard:
o intelligent device selection by device type, manufacturer or typed fragment of part name
automatic ID-based selection of EPROM/Flash EPROM
blank check, read, verify
program
erase

48

2
r BeeProg2 / BeeProg2C
4&/\/5@ 9 9

configuration and security bit program
illegal bit test
checksum
interprete the Jam Standard Test and Programming Language (STAPL), JEDEC standard
JESD-71
e interprete the VME files compressed binary variation of SVF files
e security
e insertion test
e contact check
¢ |D byte check
e special
¢ production mode (automatic start immediately after device insertion)
e multi-project mode
e lot of serialization modes (more type of incremental modes, from-fle mode, custom
generator mode)
o statistic
e count-down mode

Buffer operations

o view/edit, find/replace

o fill/copy, move, byte swap, word/dword split
e checksum (byte, word)

e print

File load/save

¢ no download time because programmer is PC controlled
¢ automatic file type identification

Supported file formats

¢ unformatted (raw) binary

e HEX: Intel, Intel EXT, Motorola S-record, MOS, Exormax, Tektronix, ASCII-SPACE-HEX,,
ASCIl HEX, Renesas Consolidated HEX

e Altera POF, JEDEC (ver. 3.0.A), e.g. from ABEL, CUPL, PALASM, TANGO PLD, OrCAD
PLD, PLD Designer ISDATA, etc.

¢ JAM (JEDEC STAPL Format), JBC (Jam STAPL Byte Code), STAPL (STAPL File) JEDEC
standard JESD-71

¢ VME (ispVME file VME2.0/VME3.0)

e SVF (Serial Vector Format revision E)

e STP (Actel STAPL file)

GENERAL

e operating voltage 100-240V AC rated, 90-264 VAC max., 47-63 Hz
e power consumption max. 20W active, about 2W sleep

o dimensions 195x140x55 mm (7.7x5.5x2.2 inch)

¢ weight 0.9kg (1.98 Ib)

e operating temperature 5°C + 40°C (41°F + 104°F)

operating humidity 20%...80%, non condensing

.|
49

Elnec s.r. 0.

SmartProg2

=l /iE SmartProg2

Introduction

SmartProg2 is next member of new generation of Windows based Elnec universal
programmers. Programmer is built to meet the demands of the development labs and field
engineers to universal, but portable programmer.

SmartProg?2 is a small, fast and powerful programmer of all kinds of programmable devices.
Using build-in in-circuit serial programming (ISP) connector the programmer is able to program
ISP capable chips in-circuit. SmartProg2 isn't only a programmer, but also a static RAM tester.

SmartProg2 provides very competitive price with excellent hardware design for reliable
programming. Nice "value for money" in this class.

SmartProg?2 provides very fast programming due to high-speed FPGA driven hardware and
USB 2.0 full speed port.

SmartProg? interfaces with the IBM PC compatible personal computers, running MS Windows
OS, through USB port, what is important for LPT-port-less computers.

SmartProg2 has 40 powerful TTL pindrivers provide H/L/pull_up/pull_down and read
capability for each pin of socket. Advanced pindrivers incorporate high-quality high-speed
circuitry to deliver signals without overshoot or ground bounce for all supported devices.

SmartProg2 performs device insertion test based on the check of proper signal path
between the programmer and programmed device before it programs each device. In
dependence on programming configuration it identifies missed or poor contact between
programmed device and the ZIF socket of the programming adapter (or the programmer
directly), missed or poor contact between the programming adapter and the programmer and
it's also able to indicate wrong position of device in the ZIF socket of the programmer / the
programming adapter (moved, rotated, backward oriented). These capabilities, supported by
signature-byte check help prevent chip damage due to operator error.

When programming specification require, the (SmartProg2) programmer performs
programming verification at the marginal level of supply voltage, which, obviously, improves
programming yield, and guarantees long data retention.

SmartProg2 programmer is driven by an easy-to-use control program with pull-down menu,
hot keys and on-line help. Selecting of device is performed by its class, by manufacturer or
simply by typing a fragment of vendor name and/or part number.

Standard device-related commands (read, blank check, program, verify, erase) are boosted
by some test functions (insertion test, signature-byte check), and some special functions
(autoincrement).

All known data formats are supported. Automatic file format detection and conversion during
load of file.

The rich-featured autoincrement function enables to assign individual serial numbers to each
programmed device - or simply increments a serial number, or the function enables to read
serial numbers or any programmed device identification signatures from a file.

.|
51

Elnec s.r. 0.

The software also provides a lot of information about programmed device. As a special, the
drawings of all available packages, explanation of chip labeling (the meaning of prefixes
and suffixes at the chips) for each supported chip are provided.

The software provides full information for ISP implementation: Description of ISP connector
pins for currently selected chip, recommended target design around in-circuit programmed chip
and other necessary information.

Various programming adapters are available to handle device in PLCC, SOIC, SSOP, TSOP,
TSSOP, TQFP, QFN (MLF) and other packages.

Combination of extensive stock, flexible manufacturing and shipping of Elnec products by
world class carriers (like DHL) warrants customers very fast and secure delivery of ordered
Elnec products. Products ordered before 10 a.m. (CET) will be dispatched the same working
day (if products are in stock and the payment is done by online payment (CardPay, PayPal).

Advanced design of the SmartProg2 programmer and careful manufacturing and burning
allows us to provide a three-year warranty on parts and workmanship of the programmer
(limited 25 000-cycles warranty on ZIF socket). Elnec provides free shipping of programmer
repaired under warranty back to customer world wide. Warranty is valid from the date of
purchase. Preferential handling of repair requests ensures registration of the product that
should be done within 60 days from the date of purchase

SmartProg2 elements

40 pin ZIF socket
power/sleep LED
work result LEDs
YES! Button

Connector for ISP

arwNE

SmartProg2

6. USB connector for PC <> SmartProg2 communication cable
7. Power supply connector

Power supply connector

o—(@o©

Note: Due to low power consumption of SmartProg?2 in inactive state, it doesn't require power
switch. When the power LED indicator glows with a low intensity the SmartProg2 is in inactive
mode.

Connecting SmartProg2 to PC

Recommendation for connecting programmer to PC:

1. make ground connection between programmer and PC or other ground
2. connect programmer with PC via USB cable

3. connect power supply to programmer

4. run PG4UW control program and connect programmer

Manipulation with the programmed device

After selection of desired device for your work, you can insert into the open ZIF socket (the
lever is up) and close socket (the lever is down). The correct orientation of the programmed
device in ZIF socket is shown on the picture near ZIF socket on the programmer's cover. The
programmed device is necessary to insert into the socket also to remove from the socket when
LED BUSY light off.

Warning: SmartProg2 programmer hasn’t protection devices, which protect the content of
programmed device against critical situations, for example power failures and PC failure
(interrupted cable...). Moreover, a device is usually destroyed in the programming mode due to
forced interruption of the control program run (Reset or switching the computer off) due to
removing the connecting cable, or unplugging the programmed device from the ZIF socket.
Incorrectly placed device in the ZIF socket can cause its damage or destruction.

53

Elnec s.r. 0.

In-system serial programming by SmartProg2

For general definition, recommendation and direction about ISP see section Common notes /
ISP please.

Description of SmartProg2 ISP connector
As ISP connector inside programmer is used 2 rows, 2,54mm (0.1") pitch connector with 10
positions like 5103310-1 from TE connectivity or other compatible connector.

2" 4™ 6" g™ 10"

18 3® gE ,E gm

Front view at ISP connector of programmer.

Specification of ISP connector pins depends on the device, which you want to program. You
can find it in the control SW for programmer (PG4UW), menu Device / Device Info (Ctrl+F1).
Be aware, the ISP programming way of respective device must be selected. It is indicated by
(ISP) suffix after name of selected device.

These specifications correspond with application notes published of device manufacturers.
Used application notes you may find on www.elnec.com, section Support / Application Notes.

Notes:

e Pin no. 1 is signed by triangle scratch on ISP cable connectors.

e As ISP connectors at ISP cable are used 2 rows, 2,54mm (0.1") pitch connector with 10
positions like 09185107813 from Harting or other compatible connector.

a0l

e

i

iy
5

=
N

SmartProg2 ISP cable

Warnings:

e When you use SmartProg?2 as ISP programmer, don’t insert device to ZIF socket.

¢ When you program devices in ZIF socket, don’t insert ISP cable to ISP connector.

e Use only attached ISP cable. When you use other ISP cable (other material, length...),
programming may occur unreliable.

e SmartProg2 can supply programmed device only, but target system cannot supply
SmartProg2.

e SmartProg2 apply programming voltage to target device and checks his value (target system
can modify programming voltage). If the programming voltage is different as expected, no
action with target device will be executed.

54

l SmartProg2
Note: H/L/read SmartProg2 driver

I C1
)]
HiL/read driver R1)
in programmer _—D__ pin of ISP
connector
R2
PU/PD driver
in programmer _:_

Cl=1nF, R1=1k3, R2=22k
Selftest

If you feel that your programmer does not react according to your expectation, please run the
programmer selftest using Diagnostic pod, enclosed in the standard delivery package.

e Insert 40 pins diagnostic pod - type | into ZIF socket of the programmer. 40 pins
diagnostic pod - type | must be inserted as 40 pins device.
¢ Run selftest of programmer in PG4UW (menu Programmer / Selftest).

Technical specification

HARDWARE

Programmer

¢ two D/A converters for VCCP and VPP, controllable rise and fall time
e VCCP range 2...7V/350mA

¢ VPP range 2...25V/200mA

e USB 2.0/1.1 compatible interface

o selftest capability

ZIF socket, pindriver

e 40-pin DIL ZIF (Zero Insertion Force) socket accepts both 300/600 mil devices up to 40-pins
e pindriver: 40 TTL pindrivers, universal GND/VCC/VPP pindriver

55

Elnec s.r. 0.

e FPGA based TTL driver provides H, L, CLK, pull-up, pull-down on all pindriver pins, level H
selectable from 1.8 V up to 5V
e continuity test: each pin is tested before every programming operation

ISP connector

¢ 10-pin male type with miss insertion lock

e 6 TTL pindrivers, provides H, L, CLK, pull-up, pull-down; level H selectable from 1.8V up to
5V to handle all (low-voltage including) devices.

e 1x VCCP voltage (range 2V...7V/100mA) and 1x VPP voltage (range 2V...25V/50mA)

e programmed chip voltage (VCCP) with both source/sink capability and voltage sense

Note: The programmer is not capable to supply a target system from VCCP pin. If you have

such demand, use please a BeeProg2 / BeeProg2C programmer.

DEVICE SUPPORT

Programmer, in ZIF socket
¢ EPROM: NMOS/CMOS, 27xxx and 27Cxxx series, with 8/16 bit data width, full support of LV
series (*1*2)
e EEPROM: NMOS/CMOS, 28xxx, 28Cxxx, 27EExxx series, with 8/16 bit data width, full
support of LV series (*1*2)
Flash EPROM: 28Fxxx, 29Cxxx, 29Fxxx, 29BVxxx, 29LVxxx, 29Wxxx, 49Fxxx series, with
8/16 bit data width, full support of LV series (*1*2)
Serial E(E)PROM: 24Cxxx, 24Fxxx, 25CxxX, 25Bxxx, 25DxxX, 59Cxxx, 25Fxxx, 25PxxXx,
25Qxxx, 85xxx, 93Cxxx series, AT88SCxxx, full support for LV series (*1)
Configuration (EE)PROM: XCFxxx, 37LVxx, XC17xxxx, EPCxxx, AT17xxx, LV series
including
e NV RAM: Dallas DSxxx, SGS/Inmos MKxxx, SIMTEK STKxxx, XICOR 2xxx, ZMD U63x
series
PLD: series: Atmel, AMD-Vantis, Cypress, ICT, Lattice, NS ... (*1)
e Microcontrollers 51 series: 87Cxxx, 87LVxx, 89Cxxx, 89Sxxx, 89LVxxx, 89LSxxx, 89LPxxX,
LPC series from Atmel, Atmel W&M, Intel, Philips, SST, Winbond (*1*2)
Microcontrollers Atmel AVR: AT90Sxxxx, AT90pwm, AT90can, AT90usb, ATtiny, ATmega,
series (*1*2)
Microcontrollers Cypress: CY8CxXxxXxx
Microcontrollers ELAN: EM78Pxxx
Microcontrollers EM Microelectronic: 4 and 8 bit series
Microcontrollers Microchip PICmicro: PIC10xxx, PIC12xxx, PIC16xxx, PIC17Cxxx,
PIC18xxx, dsPIC series, 8-40 pins (*1*2)
Microcontrollers Scenix (Ubicom): SXxxx series
e Microcontrollers Silicon Laboratories(Cygnal): C8051 series
« Microcontrollers other: ASP, Macronix, Princeton, EXODUS Microelectronic, Goal, Ramtron,
Topro, VersaChips, Winbond

56

=l /\7E SmartProg2

Programmer, through ISP connector
o Serial E(E)PROM: IIC series, MW series, SPI series, KEELOQ series, serial data Flash
e Microcontrollers Atmel AVR: AT89Sxxx, AT90Sxxxx, AT90pwm, AT90can, AT90usb, ATtiny,
ATmega, AT89LSxxx, AT89LPxxx
Microcontrollers Cypress: CY8C2xxxx
Microcontrollers Elan: EM78Pxxx
Microcontrollers EM Microelectronic: 4 and 8 bit series
Microcontrollers Microchip PICmicro: PIC10xxx, PIC12xxx, PIC16xxx, PIC17CxxX,
PIC18xxx, PIC24xxx, dsPIC series, 8-40 pins (*1*2)
e Microcontrollers Philips: LPC series
e Microcontrollers Silicon Laboratories(Cygnal): C8051 series
Notes:
e (*1) - suitable adapters are available for non-DIL packages
e (*2) - there exist only few adapters for devices with more than 40 pins. Therefore think
please about more powerful programmer (BeeProg2 / BeeProg2C), if you need to program
devices with more than 40 pins
e see please actual DEVICE LIST on www.elnec.com and verify, if device you need to be
supported is listed here
e if you plan to use very new and/or very complicated chips, SmartProg2 hardware might be
not sufficient for it, therefore consider usage of more powerful programmer
(BeeProg2C/BeeProg2 for example) please
I.C. Tester
¢ Static RAM: 6116...624000

Programming speed

Device Operation Mode Time
27C010 programming and verify in ZIF 28 sec
AT29C040A programming and verify in ZIF 32 sec
AM29F040 programming and verify in ZIF 62 sec
PIC16C67 programming and verify in ZIF 10 sec
PIC18F452 programming and verify in ZIF 7 sec
AT89C52 programming and verify in ZIF 16 sec
PIC16F876A programming and verify ISP 5 sec
PIC12C508 programming and verify ISP 3 sec

Conditions: P4, 2,4GHz, USB 2.0 HS, Windows XP, PG4UW 2.11
SOFTWARE

e Algorithms: only manufacturer approved or certified algorithms are used. Custom
algorithms are available at additional cost.

e Algorithm updates: software updates are available approx. every 4 weeks, free of charge.

e Main features: revision history, session logging, on-line help, device and algorithm
information

Device operations

e standard:
o intelligent device selection by device type, manufacturer or typed fragment of part name
¢ blank check, read, verify

L. |
57

Elnec s.r. 0.

program
erase
configuration and security bit program
o illegal bit test
e checksum
e security
e insertion test
e contact check
¢ |D byte check
e special
e auto device serial number increment
o statistic
e count-down mode

Buffer operations

o view/edit, find/replace

o fill, copy, move, byte swap, word/dword split
e checksum (byte, word)

e print

File load/save

¢ no download time because programmer is PC controlled
e automatic file type identification

Supported file formats

¢ unformatted (raw) binary

e HEX: Intel, Intel EXT, Motorola S-record, MOS, Exormax, Tektronix, ASCII-SPACE-HEX

e JEDEC (ver. 3.0.A), for example from ABEL, CUPL, PALASM, TANGO PLD, OrCAD PLD,
PLD Designer ISDATA etc.

GENERAL

e operating voltage 15...20V DC, max. 500mA

e power consumption max. 6W active, 1.4W inactive

e dimensions 160x97x35 mm (6.3x3.8x1.4 inch)

¢ weight (without external power adapter) ca. 5009 (17.65 0z)
e operating temperature 5°C + 40°C (41°F + 104°F)

e operating humidity 20%...80%, non condensing

58

F Eeﬁ
El NE Setup

Setup

59

Elnec s.r. 0.

The programmer package contains a CD with the control program, useful utilities and
additional information. The permission to freely copy the content of the CD is granted in order
to demonstrate how Elnec programmers work.

For programmers connected through USB (LPT) port, control program requires correctly
installed USB driver

We recommended install software before connecting programmer to PC to avoid
unwanted complication during installation.

Software setup

Insert delivered CD to your CD drive and install program starts automatically (if not, run
setup.exe). Install program will guide you through the installation process and will do all the
necessary steps before you can first run the control program.

Step 1.
Installation CD, creation date: 05/2020, SW version: 3.59
http:/fwww.elnec.com
Install software
for programmers
View documentation Click the button to install software for programmers. -l
PDF viewer required SupifGites p@drammers: ;
BeeHive2085
Install PDF viewer BeeHive204AP/BeeHive204AP-AU 2
. BeeProg3/BeeProg2/BeeProg2AP/Beeprog2C o
Foxit Reader 7 SmartProg? S
ﬁpported operating. _ﬁ'ﬂéms:
WIN XP(x86,x64)/2003(Vista,7,8,8
Exie s
Click on “Software installation PROGRAMMERS"” button.
Step 2.

| @] Please select the language that you would like to use during
the installation of Elnec programmers software

| Gance

Select language and than click on “OK” button.

60

Setup

Welcome to Elnec programmers
software setup wizard

Setup will install PGAUW PEAIWMC universal control program
for Elnec programmers, version 3.59/05. 2020,

Itis recommended that you close all other applications before
continuing. In case of unusual behaviour during the installation
please check your antivirus ffirewall configuration espedally
custom rules for files copying.

Mote for programmers with USB connection:

Please, disconnect the programmer's USE cable until

installation of the Elnec PGAJW PGAIWMC software has been
completed.

Click Mext to continue, or Cancel to exit Setup.

Click on “Next” button

Step 4.

ﬁ! Setup - Elnec PGAUW/PGAUWMC - x

Installation mode Default or Custom
Select installation mode with default settings (Default) or customizable (Custom)

Pleaze select an installation mode with default or custom settings {such as Program
Destination Location, Start Menu Folder, Additional tasks) by selecting Default or
Custom option and pressing Mext button

(®) Default (Use default installation settings)
(0 Custom (Choose this only if you want to customize some installation settings)

For default setting you click on “Next” button. Setup will be continuing with Step 6. For change
default setting you click on “Custom” and then on “Next” button.

61

Elnec s.r. 0.

Select Destination Location
Where should Elnec PG4UW PGHIWMC be installed?

Setup will install Einec PGHUW PGAUWMC into the following folder.

To continue, dick Next. If you would like to select a different folder, dick Browse.
|D:‘|,ELNEC'|Pr0grammer

Browse...

< Back Caneel

To change default folder click on “Browse” button, select the destination folder
Then click on “Next” button
Step 6.

ﬁl =tup - Elnec PG4

Select Additional Tasks
Which additional tasks should be performed?

Select the additional tasks you would like Setup to perform while installing Elnec
PGAUW PGAIWMC, then dick Next.

Create a Start menu icon
Create a desktop icon

Install Multiprogramming control support for following programmers:
- BeeHive 2085

- BeeHive 304, BeeHive 204, BeeHive 204AF, BeeHive 204AP-AL
-BeeProg3, BeeProg2, BeeProg2C, BeeProg2AP, BeeProg+

[inetall LFT port driver {required for programmers connected via parallel LPT port)

< Badk Cancel

Check if “Install Multiprogramming control support” is selected.
Change default setting, if you want. Then click on “Next” button.

62

Setup

Step 7.

ﬁl Setup - Elnec PGAUW/PG4UWMC 2

Ready to Install

Setup is now ready to begin installing Elnec PG4UW PGHIWMC software, version
3.59/05,2020, on your computer,

Click Install to continue with the installation, or dick Back if you want to review or
change any settings.

Destination location:
D:\ELMEC\Programmer

Additional tasks:
Create a Start menu icon
Create a desktop icon
Install Multiprogramming control support for following programmers:
- BeeHive 2085
- BeeHive304, BeeHive204, BeeHive 204AP, BeeHive204AP-AL
- BeeProg3, BeeProg2, BeeProg2C, BeeProg2AP, BeeProg+

< Badk Install Cancel

Check your settings and then click on “Install” button
Step 8.

ﬁl Setup - Elnec PGAUW/PG4UWMC 2

Installing
Flease wait while Setup installs Elnec PG4UW PGHIWMC on your computer,

Extracting files...
D:\ELMEC\Programmeripgdul_ru.msg

Installation process will start.

63

Elnec s.r. 0.

Completing of Elnec programmers
software setup wizard

Setup has finished installing Elnec PGAUW PGAUWMC on your
computer, The application may be launched by selecting the
installed shortouts,

Click Finish to exit Setup.

Click “Finish” button to finish setup.

New versions of programmer software

In order to exploit all the capabilities of programmer we recommend using the latest version of
PG4UW. You may download the latest version of programmer software (file pg4uwarc.exe)
from our Internet site www.elnec.com, part download.

Copy pg4uwarc.exe to a temporary directory, disconnect programmer from PC and then
launch it. Setup will start with Step 2 from previous chapter.

Hardware setup

Warning: Because of high programmer's communication traffic, we recommend to connect
each programmer to separated USB 2.0 High speed controller (USB EHCI). Most of new PC
motherboards have two or more EHCI controller integrated in chipset. If not, you can use PCI
(PCI-E) USB add-on card (Renesas USB chipset is recommended). If the EHCI integrated in
motherboard chipset is used, consult the motherboards manual or motherboard manufacturer
tech support for USB ports mapping so you will be able connect each programmer to
separated EHCI. In generally, we also recommend connect the programmers directly to PC's
USB ports (without USB HUB) and preferable to the USB ports mounted on the motherboard
directly (mostly located on the rear side of the PC).

When the programmer is connected to USB port before control program was installed,
Windows will detect new hardware and ask user to select driver installation method:

64

I"?‘i" Setup
ELNE!
automatically or manually. To detect programmer correctly, control program installation CD
must be inserted to computer's CD-ROM drive and following steps have to be done:

Step 1.
Directly connect USB (LPT) cable to type B USB (LPT) port on programmer.

Step 2.
Directly connect USB (LPT) cable to type A USB2.0 (LPT) port on PC (high-speed
recommended).

Step 3.
Connect connectors of power supply cable to appropriate connectors on programmer and wall

plug.

Step 4.

Turn on programmer. At this time all ‘'work result' LEDs light up successive and then LEDs
switch off.

For LPT connected programmer you may start work with your programmer now.

For USB connected programmer continue with next step.

For Windows 7 and Windows 8:

Step 5.

In the notification area at task bar (mainly at lower right corner) you will see following
notification bubble:

Installing device driver software

Chck here for status.

After successfully installed driver for programmer you will see

BeeProg2, Universal 48-pindrive Programmer
Device driver software installed successfully.

Note: If another programmer will be connected to PC (maybe to the same USB port) “Installing
device driver software” will launch again. If the same programmer will be connected to other
USB port, there is no needed for any additional driver installation.

For Windows 10: No information or bubble is displayed.

65

Elnec s.r. 0.

PG4UW

66

(?ELg/\iE 5] PG4UW

PG4UW-the programmer software

Program PG4UW is common control program for all ElInec programmers, which works with all
versions of MS Windows from Windows XP to Windows 11, 32-bit and 64-bit.

Using the programmer software

The control program delivered by Elnec, included on the
CD in your package, is granted to be free from any viruses
at the moment of delivery. To increase their safety our
programs include a special algorithm for detecting possible
virus infections.

Run the control program _
L
"=
In Windows environment: double click to icon PG4UW . Ea

After start, control program PG4UW automatically scan all existing ports and search for the
connected any Elnec programmer. Program PG4UW is common for all the Elnec
programmers, hence program try to find all supported programmers.

Note: When PG4UW is started, program is checked for its integrity. Than the program display
a standard user menu and waits for your instructions.

If the control program cannot communicate with the programmer, an error message appears
on the screen, including error code and description of possible reasons (disconnected
programmer, bad connection, power supply failure, incompatible printer port...). Eliminate the
error source and press any key. If error condition still exists, the program resumes its operation
in the demo mode and access to the programmer is not possible. If you cannot find the cause
of the error, follow the instructions in Troubleshooting section. In addition, the control
program checks communication with programmer prior to any operation with the programmed
device.

67

Elnec s.r. 0.

Description of the user screen
Windows program PG4UW

BT PGAUW v3.58/05.2020 - universal control program for Elnec programmers. - o X
File Buffer Device Programmer Options Help
T 5 T 7 =
A Al Al]
L H (b G| 266 e & i
Load save | Loadpr) View[Edt | Select/def. Select | Blank Read Verfy Program
B By By LY | zxa R 7|
Programmer activity log
-
>> 2020.Jun.16, 14:14:27
211 programmers are going to be scanned on selected communication port.
5> 2020.Jun.16, 14:14:27
Scanning port(s) for BeeHive204, Site #1 not found. (EC: 01/DE:FFFFFFEF)
Scanning port(s) for BeeHive204AP, Site #1 not found. (EC:0001/DE:FFFFFFEF) Statistics
Scanning port(s) for BeeHive204RP-AU, Site #1 ... mot found. { +FFFFFFFF) - a
Scaenning port(s) for BeeHive: found. { 1/DE: 00000 e A i
Scanning port(s) for Beellive. found. (I DE:FFFFFIFF) U;‘WEIFE\NIE 0
Scanning port(s) for BeeProg: found. (I /DE:FFFFFFFF) Total 0
Scanning port(s) for BeeProg2 . found. (EC JDE:FFFFFTFF)
Scanning port(s) for BeeProg2C not found. {EC:0001/DE:FFFFFFEF)
Scanning port(s) for BeeProg2AP ’ ... not found. (I /DE:FFTFFFFF)
Scanning port(s) for BeeProgld . found. (I 001001/DE: 00000(Count down
Scanning port(s) for MEMprog2 found. (1) Status, Disabled
Scanning port(s) for PIKDprog: found. 1)
Scenning port(s) for SmartProg2 weetseeiee--.. DOt found. {EC: Ol)
Scanning port(s) for TSlprog2 not found. (EC: 01)
v
< > Statitios b Count down set
Addresses [hex) Programmer
g Siee Start End Twe: BeeProg2 Status: Not found
Device | x8 800] TFF Patt
|Bulter | x8 800] 1FF| YES!: Manual
File. X8| isd e Device
Main Checksum 0007F800h |x8-5 o e el ec Ll
Serialization: None
Spiit None:
Filename:

Toolbars
Under main menu are placed toolbars with button shortcuts of frequently used menu
commands. Toolbars are optional and can be turned off by menu command Options / View.

Log window
Log window contains the flow-control progress information about almost every operation made
in PG4UW.
Operation can be:
¢ starting of PG4UW
programmer search
file/project load/save
selection of device
device operations (device read, blank check, programming, ...)
remote control application connection and disconnection
¢ and other
Content of Log window can be saved to file concurrently while information is written to Log

window. This option can be set by menu Options / General options (and tab Log file in dialog
General options).

Panel Addresses
Panel Addresses contains information about actual address ranges of currently selected
device, loaded file and buffer start-end address settings. Some devices allow modifying default

68

(?ELE/GE 5] PG4UW

device and buffer address ranges by menu command Device / Device options / Operation
options.

Panel Addresses also contains some advanced information about current status of Split,
Serialization and buffer checksum. For more information about each of the options, please look
at:

e Split - menu Device / Device options / Operation options

e Serialization - menu Device / Device options / Serialization

e Checksum - menu Buffer / Checksum at section Checksum displayed in main window

Panel Programmer
Panel Programmer contains information about currently selected programmer.
The information includes
e programmer type
e port via programmer is connected to computer
e programmer status, can be one of following
e Ready — programmer is connected, successfully found and ready to work
¢ Not found - programmer is not found
e Demo - when user selects option (button) Demo in dialog Find programmer
¢ YES! mode - some types of programmers allow to use special modes of starting next device
operation in one of following ways:
¢ manually by control program dialog Repeat
¢ manually by button YES! placed directly on programmer
e automatically - programmer automatically detects device removing and insertion of new
device
For more details please look at Programmer / Automatic YES! chapter.

Panel Device

It contains information about currently selected device.

The information includes

¢ device name (type) and manufacturer

o device adapter needed to use with currently selected programmer

» reference to detailed Device info dialog, available also by menu Device / Device info
o reference to Advanced device options - this is available for some types of devices only

Panel Statistics

It contains statistics information about currently selected device.

The information includes

e number of successful, failure and total device operations

e count-down status indicating number of remaining devices

Statistics and count-down options are available by menu command Device / Device options /
Statistics or by mouse right click on panel Statistics and select item Statistics from popup
menu

Panel File

The panel is placed on the bottom of PG4UW main window. Panel shows currently loaded file
or project name, size and date.

69

Elnec s.r. 0.

List of hot keys

<F1> Help Calls Help

<F2> Save Save file

<F3> Load Load a file into the buffer

<F4> Edit Viewing/editing of buffer

<F5> Select/default Target-device selection from 10 last selected devices list
<Alt+F5> Select/manual Target-device selection by typing device/vendor name
<F6> Blank Blank check

<F7> Read Reads device's content into the buffer

<F8> Verify Compares contents of the target device with the buffer
<F9> Program Programs target device

<Alt+Q> Exit without save Terminates the PG4UW

<Alt+X> Exit and save Terminates the PG4UW and saving settings too
<Ctrl+F1> Displays additional information about current device
<Ctrl+F2> Erase Fill's the buffer with a given value

<Ctrl+Shift+F2> Fill's the buffer with random values.

File

Menu File is used for source files manipulation, settings and viewing directory, changes drives,
changes start and finish address of buffer for loading and saving files by binary, MOTOROLA,
MOS Technology, Intel (extended) HEX, Tektronix, ASCIl space, JEDEC, and POF format.
The menu commands for loading and saving projects are located in this submenu too.

File / Load

Analyse file format and loads the data from specified file to the buffer. You can choose the
format desired (binary, MOTOROLA, MOS Technology, Tektronix, Intel (extended) HEX,
ASCII space, ASCIl HEX, Straight HEX, JEDEC and POF). The control program stores a last
valid mask for file listing. You can save the mask into the configuration file by command
Options / Save options.

The reserved key <F3> will bring out this menu from any menu and any time.
File formats description:

ASCII HEX format

Each data byte is represented as 2 hexadecimal characters, and is separated by white space
from all other data bytes. The address for data bytes is set by using a sequence of $Annnn,
characters, where nnnn is the 4-hex characters of the address. The comma is required.
Although each data byte has an address, most are implied. Data bytes are addressed
sequentially unless an explicit address is included in the data stream. Implicitly, the file starts
an address 0 if no address is set before the first data byte. The file begins with a STX (Control-
B) character (0x02) and ends with an ETX (Control-C) character (0x03).

Note: The checksum field consists of 4 hex characters between the $S and comma
characters. The checksum immediately follows an end code.

Here is an example of ASCIlI HEX file. It contains the data "Hello, World" to be loaded at
address 0x1000:

B $A1000,

48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A °C

$S0452,

|
70

(?ELE/GE 5] PG4UW

ASCII SPACE format

Very simple hex file format similar as ASCIl HEX without checksum field, without start (STX)
and end (ETX) characters. Each data byte is represented as 2 hexadecimal characters, and is
separated by white space from all other data bytes. The address field is separated by white
space from data bytes. The address is set by using a sequence of 4-8 hex characters.

Here is an example of ASCIlI SPACE file. It contains the data "Hello, World" to be loaded at
address 0x1000:
0001000 48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A

Straight HEX format

Very simple hex file format similar as ASCIl HEX without address and checksum fields, without
start (STX) and end (ETX) characters. Each data byte is represented as 2 hexadecimal
characters, and is separated by white space from all other data bytes.

Here is an example of Straight HEX file. It contains the data "Hello, World":
48 65 6C 6C 6F 2C 20 57 6F 72 6C 64 0A

Samsung HEX format
Samsung HEX file format is slight modification of Intel HEX format, therefore in the software is
recognized and indicated as Intel HEX file format.

Notes for special x16 formats:
o Intel HEXx16 is Intel Hex file format with 16 bits data word for TMS320F devices.
e Motorola HEXx16 is Motorola file format with 16 bits data word for TMS320F devices.

Checking the check box Automatic file format recognition tells program to detect file format
automatically. When program can't detect file format from one of supported formats, the binary
file format is assumed.

When the check box Automatic file format recognition is unchecked program allows user to
manually select wished file format from list of available file formats on panel Selected file
format. Default set is from Options / General options in panel Load file format at tab File
options.

Attention: Program doesn't know recognize files in ASCIl Hex format automatically, it
recognizes them as binary. So download files in ASCII Hex format with disabled option for
automatic file format recognition.

Panel Additional operation

Checking the check box Erase buffer before loading tells the program to erase all data of
recently selected buffer. There are two options to specify erase value:

o Autodetect buffer will be erased (filled) with default "blank" value for recently selected
device and buffer. Recent default value is displayed after "Autodetect" text in
brackets, for example: "Autodetect (FFh)", "Autodetect (00h)"

e Custom defined buffer will be erased (filled) with user specified Byte value

Buffer erase is performed immediately before reading file content to buffer and it is functional
for binary and all HEX file formats. Using this one-shot setting disables current setting of Erase
buffer before loading option in menu Options / General options at tab Hex file options.

.|
71

Elnec s.r. 0.

If the checkbox Swap bytes is displayed, the user can activate function of swapping bytes
within 16bit words (or 2-byte words) during reading of file. This feature is useful especially
when loading files with Motorola representation of byte order in file (big endian). Standard load
file is using little endian byte order.

Note: Big-endian and little-endian are terms that describe the order in which a sequence of
bytes are stored in the byte-wide file or byte-wide computer memory. Big-endian is an order in
which the "big end" (most significant value in the sequence) is stored first (at the lowest
storage address). Little-endian is an order in which the "little end" (least significant value in the
sequence) is stored first. For example, in a big-endian computer, the two bytes required for the
hexadecimal number 4F52 would be stored as 4F52H in storage address 1000H as: 4FH is
stored at storage address 1000H, and 52H will be at address 1001H. In a little-endian system,
it would be stored as 524FH (52H at address 1000H, and 4FH at address 1001H).

Number 4F52H is stored in memory:

Address Big endian system Little endian system
1000H 4FH 52H
1001H 52H 4FH

The View/Edit buffer in 16-bit mode show real view to word. For example the 1001 0000 1111
0110 binary is shown a 90F6 hex - D15=1 and D0=0.

Add blank spare area - (for NAND Flash devices) if checked, adds blank spare area data
during file load to relevant position in buffer (dependent on selected device).

Panel Buffer offset for loading

Panel Buffer offset for loading contains one-shot offset setting for loading data from file to
buffer. The setting is used to specify optional offset of loaded data to store to buffer. When
Load file dialog window is opened, offset has always default setting None. It means no offset is
used to store read data in buffer.

Available offset options are:

None this setting means, no offset is applied for loading data from file to buffer.

Positive offset set of offset value, which is added to current address to store data to
buffer. This offset is available for all formats and is used in x8 format, if
current buffer organization is x8, or in x16 format, if current buffer
organization is x16.

Negative offset mode has two options:

Negative offset and Automatic negative offset - set by two ways: manual or automatic.

For manual set use option Negative offset and put wished offset value to its edit box.

For automatic offset detection use option Automatic negative offset. This value is subtracted

from current address for save data to buffer.

Negative offset value (manually defined or automatically detected) is subtracted from current
buffer address for store data to buffer.

Negative offset is applied only for all HEX file formats and is using always x8 format. Negative
offset settings are ignored for binary files and other non-HEX files.

72

(?ELE/GE 5] PG4UW

Notes:

¢ Since the value of negative offset is subtracted from real address, the result of subtraction
can be negative number. Therefore take care of correct setting of this value!

* We recommend automatic set of negative offset in special cases only. This option contains a
heuristic analyze, which can treat some data in file incorrectly. There are especially critical
files, which contain a fragmented addresses range and which exceeds a size of selected
device - some block can be ignored.

e Automatic negative offset option is not available for some kinds of special devices, that
require HEX files with exactly specified blocks used for the devices - for example Microchip
PICmicro devices. For these special devices, there are available only manual offset settings
(None, Positive offset, Negative offset).

Example for negative offset using:

A file contains data by Motorola S - format.

A data block started at address FFFFOH.

Itis a S2 format with length of address array of 3 bytes.

For all data reading you can set Negative offset option and value of negative offset to FFFFOH.

It means that the offset will be subtracted from current real addresses and so data will be
written from buffer address O.

List of file format codes and error codes
There are some errors can occur during file download in some of supported formats. The error
is written to LOG window in face "Warning: error #xxy in line rrr", xx is file format code, y is
error code and rrr is line number in decimal.

File format codes:

#00y - binary

#10y - ASCII Space

#20y - Tektronix

#30y - Extended Tektronix
#40y - Motorola

#50y - MOS Technology
#60y - Intel HEX

Load file error codes:

#xx1 - bad first character - header
#xx2 - bad character in current line
#xx3 - bad CRC

#xx4 - bad read address

#xx5 - bad length of current line

#xx6 - too big negative offset

#xx7 - address is out of buffer range
#xx8 - bad type of selected file format
#xx9 - the file wasn't loaded all

File / Save

This command saves data in the buffer which has been created, modified or read from a
device onto a specified disk. The file format of saved file can be chosen from supported
formats list box. There can be also entered the Buffer start and Buffer end addresses which
exactly specify part of buffer to save to file. Supported file formats now are binary,

.|
73

Elnec s.r. 0.

MOTOROLA, MOS Technology, Tektronix, Intel (extended) HEX, ASCII space, JEDEC
and POF.

If the checkbox Swap bytes is displayed, the user can activate function of swapping bytes
within 16bit words (or 2-byte words) during writing to file. This feature is useful especially when
saving files with Motorola representation of byte order in file (big endian). Standard save file
operation is using little endian byte order.

The reserved key <F2> will bring out this menu from any menu and any time.

File / Load project

This option is used for loading project file, which contains device configuration buffer data
saved and user interface configuration.

The standard dialog Load project contains additional window - Project description - placed

at the bottom of dialog. This window is for displaying information about currently selected

project file in dialog Load project.

Project information consists of:

¢ manufacturer and name of the first device selected in the project

¢ date and time of project creation

e user written description of project (it can be arbitrary text, usually author of project and some
notes)

Note: For projects with serialization turned on.

Serialization is read from project file by following procedure:

1. Serialization settings from project are accepted

2. Additional serialization file search is performed. If the file is found it will be read and
serialization settings from the additional file will be accepted. Additional serialization file is
always associated to the specific project file. When additional serialization file settings are
accepted, project serialization settings are ignored.

Name of additional serialization file is derived from project file name by adding extension ".sn"
to project file's name.

Additional serialization file is always placed to the directory "serialization\" into the control
program's directory.

Example:

Project file name: my_work.prj
Control program's directory: c:\Program Files\Programmer\

The additional serialization file will be:
c:\Program Files\Programmer\serialization\my_work.prj.sn

Additional serialization file is created and refreshed after successful device program operation.
The only requirement for creating additional serialization file is load project with serialization
turned on.

Command File / Save project deletes additional serialization file, if the file exists, associated
with currently saved project.

.|
74

(?ELE/GE 5] PG4UW

Enter job identification dialog

The dialog will be showed when loading protected project files.

It contains two editable fields:

e Operator identification this parameter will be used to identify programmer's operator.
Operator ID must be at least 3 chars. User has to enter Operator
identification value, because it is mandatory parameter, when
creating Job Report for protected project.

e Enter Job ID identification of current job.

Note: Dialog Enter job identification is not password dialog. Values of Operator identification
and Job ID have informative purpose only; they will be included in Job Report. It does not
relate to protected and/or encrypted project passwords.

File / Save project

This dialog is used for saving project file, which contains settings of device configuration and
buffer data saved. Data saved to project file can be restored anytime by menu command File /
Load project.

Description of actually selected project in file list box
Displays information about existing project file currently selected in dialog Save project. This
box is only for information and is not writable.

Description of project being saved

Upper half displays information about actual program configuration including currently selected
device, program mode, date and time, etc., and is not writable. These actual program settings
are used for creation of project description header.

Bottom half is user editable and contains project description (arbitrary text) which usually
consists of project author and some notes.

Checkbox Encrypt project file (with password) is used to save project in special format
using encryption algorithm. This prevents loading project file into software without knowledge

of password. After clicking the button key , password dialog appears, which is used to
specify encryption password for project being saved.

Checkbox Set Protected mode of software after loading of this project file is used to save

project in special mode called Protected mode. After clicking the button with key \
password dialog appears, which is used to specify Protected mode password for project being
saved, and another security options (disable other project loading, device operations
restriction) to prevent operator's mistakes. Projects saved with active Protected mode are
special projects called Protected mode projects. For more detailed information about
Protected mode projects see Options / Protected mode. When Protected mode is active, the
software indicates this by label Protected mode in right top corner of Programmer activity log.

Recommendation: passwords for Encrypt project file (with password) and Set Protected
mode of software after loading of this project file should not be the same.

Checkbox Require project file unique ID before first programming when active, software
asks user for entering correct project file unique ID, before allowing to start the first device
programming after load project. This feature is recommended for additional check, that correct

.|
75

Elnec s.r. 0.

project file is recently loaded. There is also recommended to use this checkbox along with
active Protected mode. When the request of project file unique ID is active, the software
indicates this by label (ID) next to project file name in bottom status line in control program
main window.

Note: Option Require project file unique ID before first programming is replacement of former
Require project file checksum before first programming. Unique ID advantage over generic
checksum is that unique ID is calculated not just from main device buffer data, but also from
secondary buffers data used by device and available device settings. When the request of
project file checksum is active, the software indicates this by label (CSum) next to project file
name in bottom status line in control program main window. This option is no longer available
in Save project dialog, but it can be activated after loading of older project file, that has the
checksum request set on.

File / Reload file

Choose this option to reload a recently used file from Reload file list.

When you use a file (load or save), it is automatically added to the Reload file list (up to 10 file
names are stored in the list). Files are listed in order depending on time of use of them. Lastly
used files are listed before files used far off.

To Reload a file:

1. From the File menu, choose Reload file.
2. List of lastly used files is displayed. Click the file you want to reload.

Note: When reloading a file the file format is used, by which the file was lastly loaded/saved.
File / Reload project
Choose this option to reload a recently used file from Reload project list.

When you use a project (load or save), it is automatically added to the Reload project list (up
to 10 project names are stored in the list). Projects are listed in order depending on time of use
of them. Lastly used files are listed before files used far off.

To Reload a project:

3. From the File menu, choose Reload project.
4. List of lastly used projects is displayed. Click the project you want to reload.

File / Project options

This option is used for display/edit project options of actually loaded project. Project options
mean basic description of project including following project data:

¢ device name and manufacturer

e project creation date

o user defined project description (arbitrary text), e.g. project author and other text data for
more detailed project description

76

(?ELE/GE 5] PG4UW

User can directly edit user defined project description only. Device name, manufacturer, and
project date are generated automatically by program.

File / Load encryption table

This command loads the data from binary file from disk and it saves them into the part of
memory, reserved for an encryption (security) table.

File / Save encryption table

This command writes the content of the memory's part, reserved for an encryption table, into
the file on the disk as a binary data.

File / Exit without save

The command deallocates heap, cancels buffer on disk (if exists) and returns back to the
operation system.

File / Exit and save

The command deallocates heap, cancels buffer on the disk (if exists), saves current setting of
recently selected devices to disk and returns back to the operation system.

Buffer

Menu Buffer is used for buffer manipulation, block operation, filling a part of buffer with string,
erasing, checksum and of course editing and viewing with other items (find and replace string,
printing...).

Buffer / View/Edit

This dialog is used to view (view mode) or edit (edit mode) data in buffer (for viewing in DUMP
mode only). Use arrow keys for select the object for edit. Edited data are signified by color.
The data in buffer outside of area where are located data for the selected chip are shown using
gray background.

You can use <F4> hot key also.

View/Edit Buffer

F1 display help of actual window

F2 fill buffer block specified by start and end addresses by requested hex (or
ASCII) string.

Ctrl+F2 erase buffer with specified blank value

Ctrl+Shift+F2 fill buffer with random data

Shift+F2 save buffer data to binary file. This command is available for secondary

buffers only. Secondary buffers are special areas used for some devices,
for example Data EEPROM for Microchip PICmicro devices. Commands
for Load/Save data to/from Main buffer are available in main menu "File"
and also by buttons Load, Save in main application window.

F3 copy specified block of buffer data at new address. Target address needn't
be out from source block addresses.

77

Elnec s.r. 0.

Shift+F3 load data from binary file to buffer. This command is available for
secondary buffers only. For more information see notes for save buffer
data command (Shift+F2) above.

F4 move block is used to move specified block of data in current buffer on
new address. Target address needn't be out from source block addresses.
Source address block (or part) will be filled by topical blank character.

F5 swap bytes command swaps a high- and low- order of byte pairs in current
buffer block. This block must start on even address and must have an
even number of bytes. If these conditions do not fulfill, the program
modifies addresses itself (start address is moved on lower even address
and/or end address is moved on higher odd address).

F6 print buffer

F7 find string (max. length 16 ASCII characters)

F8 find and replace string (max. 16 ASCII chars.)

F9 change current address

F10 change mode view / edit

F11 switch the mode of buffer data view between 8 bit and 16 bit view. It can

be also do by mouse clicking on the button to the right of View/Edit mode
buffer indicator. This button indicates actual data view mode (8 bit or 16
bit), too. When 16 bit view mode is used, Bytes of data inside 16 bit Words
are displayed in Little-endian order.

F12 checksum dialog allows count checksum of selected block of buffer
change mode view / edit

Arrow keys move cursor up, down, right and left

Home/End jump on start / end current line

PgUp/PgDn jump on previous / next page

Ctrl+PgUp/PgDn jump on start/ end current page
Ctrl+Home/End jump on start/ end current device
Shift+Home/End jump on start/ end current buffer
Backspace move cursor one position left (back)

Note: Characters 20H - FFH (mode ASCII) and numbers 0...9, A...F (mode HEX) immediately
changes content of edit area.
Not all commands are available for all situations. It depends on selected device and buffer(s)
used for device.
Warning: Editing of ASCII characters for word devices is disabled.

Print buffer
This command allows write selected part of buffer to printer or to file. Program uses at it an
external text editor in which selected block of buffer is displayed and can be printed or saved to
file, too. By default is set simple text editor notepad.exe, which is standard part of all versions
of Windows.

In Print buffer dialog are following options:
Block start

Defines start address of selected block in buffer.
Block end

Defines end address of selected block in buffer.

External editor
This item defines path and name of external program, which has to be used as text viewer for
selected block of buffer. By default is set simple text editor notepad.exe, which is standard part

.|
78

(?ELE/GE 5] PG4UW

of all versions of Windows. User can define any text editor for example wordpad.exe, which is
able to work with large text files. In user defined text editor user can print or save to file
selected block of buffer.
The external editor path and name is saved automatically to disk.

Find dialog box
Enter the search string to Find to text input box and choose <Find> to begin the search or
choose <Cancel> to forget it.

Direction box specifies which way you want to search, starting from the current cursor position
(In edit mode). Forward (from the current position or start of buffer to the end of the buffer) is
the default. Backward searches toward the beginning. In view mode searches all buffer.
Origin specifies where the search should start.

Find & Replace dialog box
Enter the search string in the Text to find string input box and enter the replacement string in
the Replace with input box.

In Options box you can select prompt on replace: if program finds instance you will be asked
before program change it.

Origin specifies where the search should start.

Direction box specifies which way you want to search, starting from the current cursor position
(In edit mode). Forward (from the current position or start of buffer to the end of the buffer) is
the default. Backward searches toward the beginning. In view mode searches all buffer.

Press <Esc> or click Cancel button to close dialog window.

By pressing Replace button the dialog box is closed and a Question window is displayed. This
window contains following choices:

Yes replaces found item and finds next

No finds next item without replacing current one

Replace All replaces all found items

Abort searchaborts this command

View/Edit buffer for PLD

Ctrl+F2 erase buffer with specified blank value

Ctrl+Shift+F2 fill buffer with random data

F9 go to address...

F10 change mode view / edit

F11 switch the mode of buffer data view between 1 bit and 8 bit view. It

can be also doing by mouse clicking on the button to the right of
View/Edit mode buffer indicator. This button indicates actual data
view mode (1 bit or 8 bit), too.

Arrow keys move cursor up, down, right and left
Home/End jump on start / end current line
PgUp/PgDn jump on previous / next page
Ctrl+PgUp/PgDn jump on start / end current page
Ctrl+Home/End jump on start / end edit area
Backspace move cursor one position left (back)

Note: Characters 0 and 1 immediately changes content of edit area.

79

Elnec s.r. 0.

Buffer / Fill block

Selecting this command causes filling selected block of buffer by requested hex (or ASCII)
string.

Selecting option "Allow address history logging" activates saving of recently confirmed values.
These are saved for each device separately; count is limited to last 15 items.
Note: Address history values are common for all buffer data manipulation dialogs.

Default address range is set according to buffer range of selected device.
Selecting option "Maintain last inserted values" causes that for the next time you open this
dialog, previously confirmed values will be reloaded as default.

Buffer / Copy block

This command is used to copy specified block of data in current buffer on new address. Target
address needn't be out from source block addresses.

Buffer / Move block

This command is used to move specified block of data in current buffer on new address.
Target address needn't be out from source block addresses. Source address block (or part)
will be filled by topical blank character.

Selecting option "Allow address history logging" activates saving of recently confirmed values.
These are saved for each device separately; count is limited to last 15 items.
Note: Address history values are common for all buffer data manipulation dialogs.

Default address range is set according to buffer range of selected device.
Selecting option "Maintain last inserted values" causes that for the next time you open this
dialog, previously confirmed values will be reloaded as default.

Buffer / Swap block

This command swaps a high- and low- order of byte pairs, foursomes, nibbles inside bytes or
bits inside bytes depending on swap mode selected by user. Swap operation is performed on
buffer block specified by Start and End addresses. This block must start on even address and
must have an even number of bytes. If the conditions do not fulfill, the program modifies
addresses itself (start address is moved on lower even address and/or end address is moved
on higher odd address).

Following swap modes are available, user can select from:

1. Swap 2-bytes inside 16-bit words swap of byte pairs inside 16-bit words.

2. Swap 4-bytes inside 32-bit words swap of byte foursomes inside 32-bit words.

3. Swap nibbles inside bytes swap of high- and low- nibbles inside each byte.
4. Mirror bits inside bytes mirror bits inside each byte

Examples of swap operation in buffer:

Swap bytes operation from Start address 0 to End address N modifies data in buffer by
following tables:

80

(?ELg/\iE 5] PG4UW

Original S_wqp 2-bytgs S_wqp 4-bytgs Swap Mi_rro_r bits

Address Data inside 16-bit inside 32-hit nibbles inside
words words inside bytes bytes

0000h b0 bl b3 bon bOm
0001h bl b0 b2 bln bim
0002h b2 b3 bl b2n b2m
0003h b3 b2 b0 b3n b3m
0004h b4 b5 b7 b4n b4m
0005h b5 b4 b6 b5n b5m
0006h b6 b7 b5 b6n b6m
0007h b7 b6 b4 b7n b7m

b0, b1, b2 ... means original buffer byte values from addresses 0, 1, 2...
bOn, bln, b2n... means nibble-swapped original bytes b0, b1, b2... by following rules:

Original Byte bits bit7 bit6 bit5 bit4 bit3 bit2 bitl bitO
Nibble-swapped Byte Bits bit3 bit2 bitl bitO bit7 bit6 hit5 hit4
Original Byte bits bit7 bit6 bit5 bit4 bit3 bit2 bitl bit0
Mirrored Byte Bits bitO bitl bit2 bit3 bitd bit5 bit6 bit7

Selecting option "Allow address history logging" activates saving of recently confirmed
values. These are saved for each device separately; count is limited to last 15 items.
Note: Address history values are common for all buffer data manipulation dialogs.

Default address range is set according to buffer range of selected device.
Selecting option "Maintain last inserted values" causes that for the next time you open this
dialog, previously confirmed values will be reloaded as default.

Buffer / Erase block

If this command is selected, the selected range of buffer will be filled with topical blank
character.

Selecting option "Allow address history logging" activates saving of recently confirmed values.
These are saved for each device separately; count is limited to last 15 items.

Note: Address history values are common for all buffer data manipulation dialogs.

Default address range is set according to buffer range of selected device.
Selecting option "Maintain last inserted values" causes that for the next time you open this
dialog, previously confirmed values will be reloaded as default.

The reserved key <Ctrl+F2> will bring out this menu from any menu and any time.

Buffer / Fill random data

If this command is selected, the selected range of buffer will be filled with random data.

Selecting option "Allow address history logging" activates saving of recently confirmed values.
These are saved for each device separately; count is limited to last 15 items.
Note: Address history values are common for all buffer data manipulation dialogs.

|
81

Elnec s.r. 0.

Default address range is set according to buffer range of selected device.
Selecting option "Maintain last inserted values" causes that for the next time you open this
dialog, previously confirmed values will be reloaded as default.

The reserved key <Shift+Ctrl+F2> will bring out this menu from any menu and any time.

Buffer / Duplicate buffer content

This command performs duplicate buffer content in range of source EPROM to range of
destination EPROM. This procedure is suitable if there is used for example 27C512 EPROM to
27C256 EPROM position.

Note: The procedure always uses buffer start address 00000h.

Buffer / Checksum

Checksum of data stored in buffer of PG4UW is useful to verify that the buffer data are correct.
PG4UW contains following functions related to checksum:

e Tab Checksum calculator, this is on-demand checksum calculator that can calculate and
display various types of checksums of various data blocks in buffer.

e Tab Main checksum options contains options for Automatic checksum calculator with
Main checksum value displayed in main window of PG4UW in table Addresses and in
Programmer activity log of PG4UW as "Data checksum of selected buffers:".

Tab Checksum calculator contains following controls:
e Group Buffers included to checksum calculator contains:

e Checkboxes to select, which buffers have to be used (included) for checksum calculator.
Data of selected buffers are sequentially processed by checksum calculation as one
data stream, buffer by buffer, in order as listed in group Buffers included to checksum
calculator.

e Address range for each buffer. Addresses are always defined as Byte addresses.

e Customizable Excluded blocks for each buffer. Excluded blocks can be useful for
example for serialization. Serialization usually modifies data at specified addresses in
buffer. So there is problem to check the checksum of buffer, when data on some
addresses were changed by serialization engine before each device programming. If
part of buffer (data block) used for serialization is excluded from checksum calculation,
the checksum of buffer data will not be changed by serialization data changes. One or
more excluded blocks can be specified.

Fields displaying values of calculated checksum types: see description of types at the
bottom.

Column marked as STRAIGHT is result of checksum calculation without additional
adjustments.

Column marked as NEGATED is a negation of checksum so, that SUM + NEG. = FFFFH.
Column marked as SUPPLEMENT is complement of checksum so, that SUM + SUPPL. =0

(+ carry).

¢ Insert checksum options box - this box contains following options for Calculate & insert
operation:
¢ Insert checksum Kind of checksum that is written into the buffer when, the Calculate

& insert operation was executed.

82

(?ELE/GE 5] PG4UW

¢ Insert at address Address in buffer where a result of chosen checksum is written,
when the Calculate & insert was executed. Address can not be
specified inside the range <From address> to <To address>.
Address is always defined as Byte address.

e Size Size of chosen checksum result, which will be written into the
buffer. A size of inserted checksum may be Byte (8-bit), Word
(16-bit) or DWORD (32-bit). If size is smaller then selected
checksum size, only lower byte(s) of checksum value will be
written into the buffer.
Note: If Word size was selected, a low byte of checksum value will
be written on address specified in box Insert address and a high
byte will be written on address incremented by one. Similarly it is
for DWORD.

e Calculate button - click on the button Calculate starts calculating checksums for selected
block in buffer. No writes into the buffer are executed.

e Calculate & insert button - click on the button Calculate & insert starts calculating
checksums for selected buffers and writes the chosen checksum into the main buffer (the
first buffer in dialog View/Edit buffer) at address specified by Insert address. This function is
available for Byte, Word, CRC-CCITT and CRC-XMODEM checksums.

e Close button - closes dialog Checksum.

Tab Main Checksum options contains following options:

Group Buffers included to Main Checksum calculation contains:
Checkboxes to select, which buffers have to be used (included) for Main Checksum
calculation. Data of selected buffers are sequentially processed by checksum calculation
as one data stream, buffer by buffer, in order as listed in group Buffers included to
Main Checksum calculation.
Address range for each buffer. Addresses are always defined as Byte addresses.
Customizable Excluded blocks for each buffer. Excluded blocks can be useful for
example for serialization. Serialization usually modifies data at specified addresses in
buffer. So there is problem to check the checksum of buffer, when data on some
addresses were changed by serialization engine before each device programming. If
part of buffer (data block) used for serialization is excluded from checksum calculation,
the checksum of buffer data will not be changed by serialization data changes. One or
more excluded blocks can be specified.
Selection group Checksum type allows select wished kind of checksum to be used for
Main Checksum. More information about Checksum types can be found at the bottom of
this page.
Field Checksum contains actual value of recently calculated checksum.
Button Apply is used to confirm checksum settings from Main Checksum options.
Please note, that once the button is pressed, previous checksum settings are lost.
Button Close is used to close the Checksum dialog. If you made some changes in
settings, they won't take effect until you press Apply.
Note:

e When selecting new device by Select device dialog (F5), Checksum calculator settings

are set to defaults, as well as Main Checksum settings.
e Checksum calculator settings are not saved to .ini or project file(s), they are temporary
only. Main Checksum settings are saved to .ini and project files.

e When starting PG4UW or loading project, initial settings for Checksum calculator for

recently selected device from .ini or .eprj file are not defaults, but they are taken (copied)

.|
83

Elnec s.r. 0.

from Main Checksum settings. So Checksum calculator options are equal to recent
Main Checksum options after starting software or loading project.
¢ Dialog Checksum options offers also useful functions such as Reset to defaults, or
Copy Checksum calculator settings to Main Checksum settings, and vice versa.
Checksum types

Byte sum (x8)

Buffer data are summed byte-by-byte irrespective of current buffer view mode (x8/x16/x1)

organization. Any carry bits exceeding 32-bits are neglected. This checksum mode is indicated

by string (x8) displayed after checksum value in main program window.

Word sum Little Endian (x16)

Buffer data are summed word-by-word irrespective of current buffer view mode organization.
Any carry bits exceeding 32-bits are neglected. This checksum mode is indicated by string
(x16 LE) displayed after checksum value in main program window. Term Little Endian means,
the buffer checksum is calculated from words read from buffer in Little Endian mode.

Word sum Big Endian (x16)

Buffer data are summed word-by-word irrespective of current buffer view mode organization.
Any carry bits exceeding 32-bits are neglected. This checksum mode is indicated by string
(x16 BE) displayed after checksum value in main program window. Term Big Endian means,
the buffer checksum is calculated from words read from buffer in Big Endian mode.

CRC-CCITT
Buffer data are summed by bytes to Word using polynomial x*16+x"*12+x"5+1 (1021h), init
value FFFFh, reflections in/out are off, XOR out 0

CRC-XMODEM
Buffer data are summed by bytes to Word using polynomial x*16+x"*12+x"5+1 (1021h), init
value Oh, reflections in/out are off, XOR out 0

CRC-16
Buffer data are summed by bytes to sum by bytes to WORD using standard CRC-16 algorithm
with polynomial x*"16+x"15+x"2+1 (0x8005), init value 0, and XOR out 0

CRC-32

Buffer data are summed by bytes to DWORD using standard CRC-32 algorithm with
polynomial:

X32 + X26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + X7 + x5 + x4 + X2 + x + 1
(0x04C11DB7),

initial value OXFFFFFFFF and XOR out OXFFFFFFFF

MD5
an MD5 hash expressed as a sequence of 32 hexadecimal digits (128 bits)

SHA-1

"Secure Hash Standard" expressed as a sequence of 40 hexadecimal digits (160 bits)
Checksum forms

Straight checksum without additional adjustments.

Negated negation of checksum so, that SUM + NEG. = FFFFH.

Supplement is complement of checksum so, that SUM + SUPPL. = 0 (+ carry).

84

(?ELE/GE 5] PG4UW

Device dependent checksum - applies for some devices, e.g. STMicroelectronics's STM8
family The checksum modes for main checksum can be set in pop-up menu by clicking on
label checksum in main program window or by menu shortcuts

Shift+Ctrl+1 for Byte sum (x8),

Shift+Ctrl+2 for Word sum Little Endian (x16)

Shift+Ctrl+3 for Word sum Big Endian (x16) etc...
Word is 16-bit word.
DWORD is 32-bit word.
Abbreviated form of Main Checksum forms listed in main window of PG4UW and in
Programmer activity log are:

Byte sum (x8): x8
Word sum (x16) Little Endian: x16 LE
Word sum (x16) Big Endian: x16 BE

Straight: -S

Negated: -N

Supplement: -U
Device

Menu Device includes functions for a work with selected programmable devices - device
select, read data from device, device blank check, device program, device verify and device
erase.

Device / Select from default devices

This window allows selecting the desired type of the device from list of default devices. This
one is a cyclic buffer in which are stored recently selected devices including their device
options. This list is saved to disk by command File / Exit and save.

If you wish display additional information about the current device, use an <Ctrl+F1> key. This
command provides a size of device, organization, programming algorithm and a list of
programmers (including auxiliary modules) that supported this device. You can find here
package information and other general information about current device too.

Use a key for delete of current device from list of default devices. There isn’t possible to
empty this list, if you repeat this access. The last device stays in buffer and the key isn't
accepted.

Device / Select device...

This window allows selecting the desired type of device from our database of all devices
supported by currently selected programmer. It is possible to choose device by name, by type
or by manufacturer.

e Enter search query into search field to filter device database. Query will be divided to
fragments which will be considered as indivisible. Use space character " " to separate
query fragments. To include space character into fragment, use double quotes to
surround this "space containing fragment".

e Query fragments are compared to device name, manufacturer, programming adapter
name and ordering number, strings are not case sensitive.

.|
85

Elnec s.r. 0.

e Fragments of query are by default compared using AND logic, but there is an option to
switch to OR logic if needed.

e Matching results have computed relevancy according to how close the match is (with
respect to AND/OR logic). By default, results are ordered by relevancy.

e Search query field has history of last few items which are saved with global options.

o If there are less than 10 results matching your query, the Search suggestions algorithm
(if enabled) tries to help you find more results and offers them in separated list as optional.

Note 1: The names of the programmable devices in software don't contain all characters,
shown at the top of the chip or mentioned in the datasheet section part numbering. The names
contain all characters necessary to identification of the device, but don't contain such codes,
that have none influence to the programming, for example temperature code, speed code,
packing type code, etc... If such code (letter) is at the end of the name, is omitted, if such code
(letter) is in the middle of name, then is replaced by character 'x'.

Examples:

e Devices Am27C512-150, Am27C512-200 and Am27C512-250 are shown in the software
only once, as Am27C512

e S29GLO064N11TF1010 device is shown in the software as S29GL064NxxTxx01

Option Tolerant search and "x" character replacement switches to less strict method of
string compare which allows find results not exactly matching the query. This method also
helps to cover previously mentioned part numbering issues. As "wildcard character" you use
question mark "?".

Examples of tolerant search queries and results:

e searching Am27C512-150, Am27C512-200 and Am27C512-250 gives Am27C512
e searching S29GL064N11TF1010 gives S29GL0O64NxxTxx01
e searching ??27C512 gives Am27C512 and also AT27C512

Note 2: If some device is listed twice and the second time with suffix x16, Dual, Quad, etc. it
means, that programming algorithm provides more (faster) access modes.

If you wish display additional information about the current device, use button Device info or
an <Ctrl+F1> shortcut key.

The currently displayed device list can be saved to text file by pressing button Save currently
displayed list to file.

Selected device is automatically saved to buffer of default devices. This buffer is accessible
with Device / Select from default devices command.

Device / Select EPROM /Flash by ID

Use this command for autoselect an EPROM or Flash as active device by reading the device
ID. The programmer can automatically identify certain devices by the reading the manufacturer
and the device-ID that are burnt into the chip. This only applies to EPROM or Flash that
supports this feature. If the device does not support a chip ID and manufacturer's ID, a
message will be displayed indicating this as an unknown or not supported device.

86

(?ELE/GE 5] PG4UW

If more devices with identical chip ID and manufacturer's ID were detected, the list of these
devices will be displayed. A corresponding device can be chosen from this list by selecting its
number (or manufacturer name) from list and press <Enter> (or click OK button). Press a key
<Esc> or click Cancel button at any time to cancel device selection without affecting the
currently selected device.

Warning: The control program only support this time EPROM'’s and Flash with 28 and 32 pins.
Any of programmers determines pins number automatically. For other programmers you must
enter this number manually.

The programmer applies a high voltage to the appropriate pins on the socket. This is
necessary to enable the system to read the device ID. Do not insert into the socket a device
that is not an EPROM or Flash. It may be damaged when the programmer applies the high
voltage.

We don't recommend apply this function to:

e 2764 and 27128 EPROM types, because most of them ID not supports

¢ Flash memories with non-standard pinout (e.g. Firmware Hub Flash)

¢ Flash memories, which don't accept Vid voltage at A9 pin

¢ low voltage EPROM and Flash memories

Note: The procedure is not available if ISP programmable device is selected i.e. in ISP mode
of the programmer. Select any device programmable in ZIF socket of the programmer.

Device / Device options

All settings of this menu are used for programming process, serialization and associated file
control.
Device / Device options / Operation options

All settings of this command are used for programming process control. This is a flexible
environment, which content items associated with current device and programmer type. Items,
which are valid for the current device but aren't supported by current programmer, are
disabled. These settings are saving to disk along with associated device by File / Exit and
save command.

The commonly used term are also explained in the user manual to programmer. The special
terms used here are exactly the terms used by manufacturer of respective chip. Please read
the documentation to the chip you want to program for explanation of all used terms.

List of commonly used items:
group Addresses:

device start address (default 0)

device end address (default device size-1)

buffer start address (default 0)

Split (default none)

This option allows setting special mode of buffer when programming or reading device. Using
split options is particularly useful when using 8-bit data memory devices in 16-bit or 32-bit
applications.

Following table describes buffer to device and device to buffer data transfer

87

Elnec s.r. 0.

Split type Device Buffer Address assignment
None Device [ADDR] Buffer [ADDR]

Even Device [ADDR] Buffer [2*ADDR]

Odd Device [ADDR] Buffer [1+ (2*ADDR)]
1/4 Device [ADDR] Buffer [4*ADDR]

2/4 Device [ADDR] Buffer [1+(4*ADDR)]
3/4 Device [ADDR] Buffer [2+(4*ADDR)]
4/4 Device [ADDR] Buffer [3+(4*ADDR)]

Real addressing will be following: (all addresses are hexadecimal)

Split type Device addresses Buffer addresses

None 00 01 02 03 04 05 00 01 02 03 04 05
Even 00 01 02 03 04 05 00 02 04 06 08 OA
Odd 00 01 02 03 04 05 01 03 05 07 09 OB
1/4 00 01 02 03 04 05 0004 080C 1014
2/4 00 01 02 03 04 05 0105090D 11 15
3/4 00 01 02 03 04 05 02 06 OA OE 12 16
4/4 00 01 02 03 04 05 03 07 0B OF 13 17

Terms explanation:

Access to device address ADDR is written as Device [ADDR].
Access to buffer address ADDR is written as Buffer [ADDR].
ADDR value can be from zero to device size (in bytes).

All addresses are byte oriented addresses.

group Insertion test:

insertion test (default ENABLE)

If enabled, the programmer checks all pins of the programmed chip, if have proper connection

to the ZIF socket (continuity test). The programmer is able to identify the wrong contact,

misinserted chip and also (partially) reversely inserted chip.

Device ID check error terminates the operation (default ENABLE)

Programmer provides ID check before each selected action. It compares read ID codes from

device with ID codes defined by device manufacturer. In case of ID error, control program

behaves as follows:

o if item is set to ENABLE, selected action is finished

o if item is set to DISABLE, selected action continues. Control program just writes warning
message about ID error to LOG window.

If enabled, the programmer checks the electronic ID of the programmed chip.

Note 1: Some old chips don't carry electronic ID.

Note 2: In some special cases, several microcontrollers don't provide ID, if copy protection
feature in the chip is set, even if device ID check setting in control program is set to "Enable".

88

(?ELE/GE 5] PG4UW

group Command execution:

blank check before programming (default DISABLE)

erase before programming (default DISABLE)
verify after reading (default ENABLE)
verify (ONCE, TWICE)
verify options (nominal VCC +/-5%

nominal VCC +/-10%
VCCmin...VCCmax)

group Target system power supply parameters

This group is available in ISP mode for some types of devices. It contains following settings:
Enable target system power supply - enables supplying of target system from programmer.
Supply voltage for target system is switched on before action with programmed device and is
switched off after action finished. If Keep ISP signals at defined level after operation is
enabled, then programmer will switch off supply voltage after pull-up/pull-down resistors are
deactivated.

Voltage - supply voltage for target system. Supply voltage range is from 2V to 6V.

Note: The voltage value given to target system depends also on current flowing to target
system. To reach exact voltage supply for target system, the proper Voltage and Max. current
values have to be defined. The Max. current value specified has to be as exact as possible
equal to real current consumption of target system.

Max. current - maximum current consumption of powered target system. Current consumption
range is from 0 to 300mA

Voltage rise time - determines skew rate of rising edge of target system power supply voltage
(switch on supply voltage).

Target supply settle time - determines time, after which must be supply voltage in target
system stabilized at set value and target system is ready to any action with programmed
device.

Voltage fall time - determines skew rate of falling edge of target system power supply voltage
(switch off supply voltage).

Power down time - determines time after switch off target system power supply within target
system keeps residual supply voltage (e.g. from charged capacitor). After this time elapsed
target system has to be without supply voltage and can be safely disconnected from
programmer.

group Target system parameters

This group is available in ISP mode for some types of devices. It contains following settings:
Oscillator frequency (in Hz) - oscillator's frequency of device (in target system). Control
program sets programming speed by its, therefore is necessary set correct value.

Supply voltage (in mV) - supply voltage in target system. Control program checks or sets (it
depends on programmer type) entered supply voltage in target system before every action on
device.

.|
89

Elnec s.r. 0.

Disable test supply voltage - disables measure and checking supply voltage of programmed
device, set in Supply voltage edit box, before action with device.

Delay after reset active - this parameter determine delay after Reset signal active to start
action with device. This delay depends on values of used devices in reset circuit of device and
can be chosen from these values: 10ms, 50ms, 100ms, 500ms or 1s.

Inactive level of ISP signals - this parameter determine level of ISP signals after finishing
access to target device. Signals of ISP connector can be set to Pull-up (they are tied through
22k resistors to supply voltage) or Pull-down (they are tied through 22k resistors to ground).

Keep ISP signals at defined level after operation - enables keeping set level of ISP signals
after access to target device finished. Control program indicates activated pull-up/pull-down
resistors by displaying window with warning. After user close this window control program will
deactivate resistors.

group Programming parameters

This group is available for some types of devices. It contains settings of which device parts or
areas have to be programmed.

group Erase parameters

This group is available for some types of devices. It contains special settings of erase modes
of selected device.
Device / Device options / Serialization

Serialization is special mode of program. When a serialization mode is activated, a specified
value is automatically inserted on predefined address into buffer before programming each
device. When more devices are programmed one by one, the serial number value is changed
for each device automatically and inserted into buffer before programming device, so each
device has unique serial number.

There are three types of serialization:

e Incremental mode
e From file mode
e Custom generator mode

Dialog Serialization contains also settings for associated serialization position files that are
used with project files with serialization turned on. For more detailed information about using
serialization in project files, look at Serialization and projects.

Basic rules of serialization:

¢ serialization is associated with recently selected device only. If a new device is selected, the
serialization settings will be reset (serialization will be set to disabled)

e serialization settings for recent device are saved along with other settings of the device to
project file or to configuration file when application is closed

e serialization engine calls request for new (next) serial number before each device
programming is started

¢ used serial number is indicated by (*) after serial number value. Used serial number means,
the next device programming will use next serial number

.|
90

(?ELE/GE 5] PG4UW

Note: Calling of new serial number request before programming can be suppressed in case of
previous unsuccessful device programming result by option Serial number usage if
programming action fails:

e when Reuse generated serial number for next programmed device option is selected,
request for new (next) serial number is suppressed in case of unsuccessful previous device
operation result. It means, used serial number is used again, and remains same until
successful device programming is completed

e when Throw away (use the serial number only once, regardless result of the
programming) is selected, request for new serial number is performed before each device
operation, regardless result of previous programming operation

Serialization can work with control program's main buffer or extended buffers available for
some types of devices, for example Microchip PIC16Fxxx devices with Data EEPROM
Memory. The selection which buffer use by serialization routine is available in dialog
Serialization. If Buffer settings box is not visible, the current serialization mode does not
support extended buffers.

Device / Device options / Serialization / Incremental mode & SQTP

The Incremental mode & SQTP enables to assign individual serial numbers to each
programmed device. A starting number entered by user will be incremented by specified step
for each device program operation and loaded in selected format to specified buffer address
prior to programming of each device. Options available in Incremental mode serialization allow
also set equivalent serialization to Microchip SQTP used for Microchip PICmicro® devices.

There are following options, that user can modify for incremental mode:

S/ Nsize

S / N size option defines the number of bytes of serial value which will be written to buffer. For
Bin (binary) serialization modes values 1-8 are valid for S / N size and for ASCII serialization
modes values 1-16 are valid for S/ N size.

Address

Address option specifies the buffer address, where serial value has to be written. Note that
address range must be inside the device start and device end addresses. Address must be
correctly specified so the last (highest or lowest) byte of serial value must be inside device
start and device end address range.

Start value

Start value option specifies the initial value, from which serialization will start. Generally, the
max. value for serialization is $1FFFFFFF in 32 bit long word.

When the actual serial value exceeds maximum value, three most significant bits of serial
number are set to zero. After this action the number is always inside 0...$1FFFFFFF interval
(this is basic style of overflow handling).

Step
Step options specify the increment step of serial value incrementation.

S/ N mode
S / N mode option defines the form in which serial value has to be written to buffer. Two
options are available:
e ASCII means the serial number is written to buffer as ASCII string. For example number
$0528CD is in ASCII mode written to buffer as 30h 35h 32h 38h 43h 44h ('0' ‘5’ ‘2’
‘8" ‘C’ ‘D’), i.e. six bytes.

.|
91

Elnec s.r. 0.

e Bin means the serial number is written directly to buffer. If the serial number has more
than one byte length, it can be written in one of two possible byte orders. The byte
order can be changed in Save to buffer item.

Style
Style option defines serial number base. There are two options:
e Decimal numbers are entered and displayed using the characters '0' through '9".

e Hexadecimal numbers also use characters 'A' through 'F'.
The special case is Binary Dec, which means BCD number style. BCD means the decimal
number is stored in hexadecimal number, i.e. each nibble must have value from 0 to 9. Values
Ato F are not allowed as nibbles of BCD numbers.
Note: Select the base in Style options before entering numbers of serial start value and step.

Save to buffer

Save to buffer option specifies the serial value byte order to write to buffer. This option is used

for Bin S/ N mode (for ASCIlI mode it has no effect).

Two options are available:

o LSByte first (used by Intel processors) will place the Least Significant Byte of serial number
to the lowest address in buffer.

e MSByte first (used by Motorola processors) will place the Most Significant Byte first to the
lowest address in buffer.

Split serial number

The option allows divide serial number into individual fragments (mostly bytes) and place the
bytes at each Nth address of buffer. This feature is particularly useful for SQTP serialization
mode for Microchip PIC devices when the device serial number can be the part of program
memory as group of RETLW or NOP instructions. For more information see Example 2 shown
in Examples section below.

Following split options are available:

e Check box Split serial number — turns on/off split function

e Split gap — specifies number of bytes placed between split serial number fragments

¢ S/N fragment size — serial number is split into fragments with size specified by this option

Example 1:

Write serial numbers to AT29C040 devices at address 7FFFAH, size of serial number is 4
bytes, start value is 16000000H, incremental step is 1, the serial number form is binary and
least significant byte is placed at the lower address of serial number in device.

To make above described serialization following settings have to be set in Serialization dialog:

Mode: Incremental mode
SIN size: 4 bytes

S/N mode: Bin

Style: Hex

Save to buffer: LS Byte first
Address: 7FFFCh

Start value: 16000000h

Step: 1

92

(?ELE/GE 5] PG4UW

Split serial number: unchecked (empty box)

Following values will be written to device:

The 1st device

Address Data

007FFFO XX XX XX XX XX XX XX XX XX XX XX XX 00 00 00 16
The 2nd device

Address Data

007FFFO XX XX XX XX XX XX XX XX XX XX XX XX 01 00 00 16
The 3rd device

Address Data

007FFFO XX XX XX XX XX XX XX XX XX XX XX XX 02 00 00 16
etc.

"xX" mean user data programmed to device

Serial numbers are written to device from address 7FFFCH to address 7FFFFH because serial
number size is 4 bytes.

Example 2:
Following example shows usage of SQTP serialization mode when serial number is split into
RETLW instructions for Microchip PIC16F628 devices.

Note: Serial quick turn programming (SQTP) is Microchip specified standard for serial
programming of Microchip PIC microcontrollers. Microchip PIC devices allows you to program
a unique serial number into each microcontroller. This number can be used as an entry code,
password, or ID nhumber.

Serialization is done by using a series of RETLW (Return Literal W) instructions, with the serial
number bytes as the literal data. To serialize, you can use Incremental mode serialization or
From file mode serialization.

Incremental serialization offers serial number Split function. Serial number split allows usage of
incremental numbers separated into even or odd bytes and between each byte of serial
number RETLW instruction code is inserted.

From file serialization is using proprietary serial numbers file. This file can consist of various
serial numbers. The numbers can have format suitable for SQTP that means number RETLW
bl RETLW b2 and so on. Note that PG4UW serial file format is not compatible with SQTP
serial file generated by Microchip MPLAB.

Example 2a:
Use of serialization split with RETLW instructions for Microchip PIC16F628 devices.

Device PIC16F628 has 14 bit wide instruction word. Instruction RETLW has 14-Bit Opcode:

Description MSB 14-Bitword LSB
RETLW Return with literal inW 11 01xx kkkk kkkk

where xx can be replaced by 00 and kkkk are data bits, i.e. serial number byte

Opcode of RETLW instruction is hexadecimal 34KKH where KK is data Byte (serial number
byte)

.|
93

Elnec s.r. 0.

Let's assume we want to write serial number 1234ABCDH as part of four RETLW instructions
to device PIC. The highest Byte of serial number is the most significant Byte. We want to write
the serial number to device program memory at address 40H. Serial number split us very
useful in this situation. Serialization without serial number split will write the following number
to buffer and device:

Address Data
0000080 CD AB 34 12 XX XX XX XX XX XX XX XX XX XX XX XX

Note: Address 80H is because buffer has byte organization and PIC has word organization so
it has equivalent program memory address 40H. When buffer has word organization x16, the
address will be 40H and number 1234ABCDH will be placed to buffer as following:

Address Data
0000040 ABCD 1234 XXXX XXXX XXXX XXXX XXXX XXXX

We want to use RETLW instruction so buffer has to be:

Address Data

0000040 34CD 34AB 3434 3412 XXXX XXXX XXXX XXXX

We can do this by following steps:

A) Write four RETLW instructions at address 40H to main buffer (this can be done by hand
editing buffer or by loading file with proper content). The bottom 8 bits of each RETLW
instruction are not important now, because serialization will write correct serial number bytes at
bottom 8 bits of each RETLW instruction.

The buffer content before starting device program will look for example as following:

Address Data
0000040 3400 3400 3400 3400 XXXX XXXX XXXX XXXX

8 bits of each RETLW instructions are zeros, they can have any value.

B) Set the serialization options as following:

SIN size: 4 Bytes
Address: 40h

Start value: 1234ABCDh
Step: 1

S/N mode: BIN

Style: HEX

Save to buffer: LS Byte first
Split serial number: checked
Split gap: 1 byte(s)
S/IN fragment size: 1 byte(s)

Split settings described above mean split of serial number by bytes to buffer at every second
byte. The correct serial number is set tightly before device programming operation starts.

The buffer content of serial number when programming the first device will be:
Address Data
0000040 34CD 34AB 3434 3412 XXXX XXXX XXXX XXXX

.|
94

(?ELE/GE 5] PG4UW

The second device will have:
Address Data
0000040 34CE 34AB 3434 3412 XXXX XXXX XXXX XXXX

Next devices will have same format of serial number, of course incremented by 1 for each
device.

Example 2.b
Use of serialization split with NOP instructions for Microchip PIC24FJ256 devices

Device PIC24FJ256 has 24 bit wide instruction word. Instruction NOP has code 00xxxxh. Let's
assume we want to use serialization in the same manner as SQTP serialization specified in
Microchip MPLAB®:

We can do this by following steps:

A) Write NOP instructions (00xxxxh) at address 800h to main buffer of PG4UW. This can be
done by hand editing buffer or by loading file with proper content. The address 800h in
PG4UW buffer is equivalent to PIC24Fxxx Program memory address 200h. For more details
you look at Device information in PG4UW for PIC24FJ256 device.

The buffer content with NOPs at address 800h before starting device program should look for
example as following:

Address Data
0000800 00 00 00 00 00 00 00 00 XX XX XX XX XX XX XX XX

XX — means any byte value

B) Set the serialization options as following:

SIN size: 3 bytes
Address: 800h

Start value: 123456h
Step: 1

S/N mode: BIN

Style: HEX

Save to buffer: LS byte first
Split serial number: checked
Split gap: 2 byte(s)
S/IN fragment size: 2 byte(s)

Split settings described above mean split of serial number into fragments with 16 bit (2 bytes)
size to buffer with gap of 2 bytes between fragments. The correct serial number is set tightly
before device programming operation starts.

The buffer content of serial number when programming the first device will be:

Address Data
0000800 56 34 00 00 12 00 00 00 XX XX XX XX XX XX XX XX

The second device will have:

Address Data
0000800 57 34 00 00 12 00 00 00 XX XX XX XX XX XX XX XX

95

Elnec s.r. 0.

Next devices will have same format of serial number incremented by 1 for each device.

Example 3:
Following example uses the same serialization options as Example 2a; instead the serial
number Split gap is set to 2 and 3.

When Split gap is set to 2 bytes, the buffer content will look as following:

Byte buffer organization:
Address Data
0000080 CD xx xx AB XX XX 34 XX XX 12 XX XX XX XX XX XX

Word16 buffer organization:
Address Data
0000040 XXCD ABXX XXXX XX34 12XX XXXX XXXX XXXX

When Split gap is set to 3 bytes, the buffer content will look as following:

Byte buffer organization:
Address Data
0000080 CD xx xx XX AB XX XX XX 34 XX XX Xx 12

Word16 buffer organization:
Address Data
0000040 XXCD xxXX XXAB XXXX XX34 XXXX XX12 XXXX

Note: When you are not sure about effects of serialization options, there is possible to test the
real serial number, which will be written to buffer. The test can be made by following steps:

1.
2.

3.
4.

5.

select wished serialization options in dialog Serialization and confirm these by OK button

in dialog Device operation options set Insertion test and Device ID check (if available) to
Disabled

check there is no device inserted to programmer’s ZIF socket

run Device Program operation (for some types of devices it is necessary to select
programming options before programming will start)

after completing programming operation (mostly with some errors because device is not
present) look at the main buffer (View/Edit buffer) at address where serial number should
be placed

Note: Address for Serialization is assigned to current buffer organization that control program
PG4UW is using for current device. If the buffer organization is byte org. (x8), the Serialization
Address will be byte address. If the buffer organization is wider than byte, e.g. 16 bit words
(x16); the Serialization Address will be word address.

Device / Device options / Serialization / From file mode

Using the From-file method, serial values are read from the user specified input file(s) and
written serialization data to buffer on specified addresses.

There are two basic kinds of From-file serialization depending on format of serialization file
used.

96

(?ELE/GE 5] PG4UW

e "Classic" From-file mode: the serialization file has serial values directly included.
Serialization data are then read directly from serialization file to buffer on address specified
in the file. Classic From-file mode is indicated in main window and info window of PG4UW
control program on panel "Serialization" as "From-file" serialization. Description of "classic"
From-file serialization file is listed in "Classic From-file serialization file format" chapter.

e From-file mode from "playlist" file: the serialization file has not serial values directly
included. The file contains name list of external files that contain serialization data.
Serialization data are then read from these external data files, each file means one
serialization step (one device programmed). Playlist From-file mode is indicated in main
window and info window of PG4UW control program on panel "Serialization" as "From-file-
pl" serialization. Description of "playlist" serialization file is listed in "Playlist From-file
serialization file format" chapter.

Software PG4UW selects proper From-file serialization mode automatically, depending on
format of user specified serialization file.

Dialog Serialization offers following options for From-file serialization:

File name

File name option specifies the serialization file name from which serial addresses and values
will be read. The input file for Classis From file serialization must have special format, which is
described in From-file serialization file format below.

Start label

Start label defines the start label in input file. The reading of serial values from file starts from
defined start label (or from the first uncommented label in file, when option Comment used
lines (serial records) in main serialization file is checked).

Comment used lines (serial records) in main serialization file

When the checkbox is checked, special "used lines comment mode" of From-file serialization
is used. In this mode, the serialization engine comments line with recent serialization record,
immediately after reading serial value from the record. Comment means replacing of the first
character at line by ";" character. Commented line will never be used for serialization again,
because the line will be determined by serialization engine as generic comment line. In this
mode, there is no need to remember last position (last serial number) used, because
serialization engine searches main serialization file for the first uncommented line (record),
each time request for next serial number occurs.

Example: When we have following line (serial record) in file before reading its value:
[label123] 20000 01 02 03 04 05 06 07 08

The format of line (after reading its value and commenting it) will be:

;label123] 20000 01 02 03 04 05 06 07 08

Advanced options for Playlist From-file serialization

Additional operation with used files
The group box contains three types of operation. User can select one of the operations to do
with used serialization data files in Playlist From-file mode. Following operations are available:

¢ Do nothing: Program does not make any operation with used serialization data file(s)
e Move used file to specified directory: Program moves used serialization data files to
user specified directory of used serialization file(s)

L. |
97

Elnec s.r. 0.

o Delete used file: Program deletes used serialization data file(s)

Directory

This option is available in playlist From-file serialization mode when option "Move used file to
specified directory" is selected. User can specify target directory, into which used
serialization data files will be moved.

File format used for data files
The option allows user to select file format of serialization data files. Following options are
available:

e Binary

o Intel HEX

o ASCII Space

e Autodetect - let's serialization engine to automatically determine file format. Automatic

recognition is supported for file formats Binary, Intel Hex, ASCII Space, and Motorola.

Note: Size of main From-file serialization file is limited to 1000MB. Recommended maximal
number of serial records (items) in one serialization file is 100000 records. More records may
cause slower operation when reading serial number before each device programming cycle.
Classic From-file mode

File format

Classic From-file serialization input file has text format. The file includes addresses and arrays
of bytes defining buffer addresses and data to write to buffer. Input file has text type format,
which structure is:

[labell] addr byteO bytel...byten

labeln] addr byteO bytel...bytem, addr byte0 bytel...bytek
\ I\ /
[

basic part optional part

; Comment
Meaning is:

basic part
Basic part defines buffer address and array of bytes to write to buffer. Basic part must be
always defined after label in line.

optional part
Optional part defines the second array of bytes and buffer address to write to buffer. One
optional part can be defined after basic part of data.

labell, labeln - labels

Labels are identifiers for each line of input file. They are used for addressing each line of file.
The labels should be unique within the file. Addressing lines of file means, the required start
label entered by user defines line in input file from which serial values reading starts.

98

(?ELE/GE 5] PG4UW

addr -
Addr defines buffer address to write data following the address.

byte0...byten, byte0...bytem, byteO...bytek -

Bytes arrays byte0O...byten, byteO...bytem and byteO...bytek are defining data, which are
assigned to write to buffer. Maximum count of bytes in one data field following the address is
64 bytes. Data bytes are written to buffer from address addr to addr+n.

The process of writing particular bytes to buffer is:

byte0 to addr

bytel to addr + 1

byte2 to addr + 2

.t;.);ten to addr + n

Optional part is delimited from the first data part by character “,“ (comma) and its structure is
the same as in the first data part, i.e. address and following array of data bytes.

Characters with special use:

[1- labels must be defined inside square brackets

“* — character which delimiters basic part and optional part of data

“* - the semicolon character means the beginning of a comment. All characters from “;“ to the

end of line are ignored. Comment can be on individual line or in the end of definition line.

Notes:

¢ Label names can contain all characters except “[* and “]“. The label names are analyzed as
non case sensitive, i.e. character “a“ is same as “A“, “b" is same as “B“ etc..

¢ All address and byte number values in input file are hexadecimal.

Allowed address value size is from 1 to 4 bytes.

¢ Allowed size of data arrays in one line is in range from 1 to 64 bytes. When there are two
data arrays in one line, the sum of their size in bytes can be maximally 80 bytes.

« Be careful to set correct addresses. Address must be defined inside device start and device
end address range. In case of address out of range, warning window appears and
serialization is set to disabled (None).

e Address for Serialization is always assigned to actual device organization and buffer
organization that control program is using for current device. If the buffer organization is byte
org. (x8), the Serialization Address will be byte address. If the buffer organization is wider
than byte, e.g. 16 bit words (x16); the Serialization Address will be word address.

Example of typical input file for Classic From file serialization:

[navl] A7890 78 89 56 02 AB CD; commentl
[nav2] A7890 02 02 04 06 08 0A
[nav3d] A7890 08 09 0OA OB A0 CO; comment2
[nav4] A7890 68 87 50 02 0B 8D
[nav5] A7890 A8 88 59 02 AB 7D

;next line contains also second definition
[nav6] A7890 18 29 36 42 5B 6D, FFFF6 44 11 22 33 99 88 77 66 55 16

; this is last line - end of file

99

Elnec s.r. 0.

In the example file six serial values with labels ,nav1“, ,nav2, ...“nav6" are defined. Each value
is written to buffer on address $A7890. All values have size 6 bytes. The line with ,nav6" label
has also second value definition, which is written to buffer on address $FFFF6 and has size 10
bytes, i.e. the last byte of this value will be written to address $FFFFF.

Note: Address for Serialization is always assigned to actual device organization and buffer
organization that control program is using for current device. If the buffer organization is byte
org. (x8), the Serialization Address will be byte address. If the buffer organization is wider than
byte, e.g. 16 bit words (x16); the Serialization Address will be word address.

Playlist From-file serialization file format

From-file serialization playlist file includes list of filenames which contain serialization data. The
file format is similar to classic serialization file format. Following file format differences are for
playlist files:

1. The playlist file must have special header at the first no empty line of file. The header is text
line in format
FILETYPE=PG4UW SERIALIZATION PLAYLIST FILE

2. each serial data batch is represented by separate line in format
[label x] datafilename

labelx - represents label

Labels are identifiers for each no-empty line of input file. They are used for addressing each
line of file. The labels should be unique within the file. Addressing lines of file means, that the
required start label entered by user defines line in input file from which serial values reading
starts.

datafilename - defines name of data file, which contains serialization data. When serialization
requires new serial value, the data file will be loaded by standard PG4UW "Load file"
procedure to PG4UW hbuffer. File format can be binary or Hex file (Intel Hex etc.). The auto-
recognition system recognizes proper file format and forces load of file in the right file format.
Data filename is relative to parent (playlist) serialization file.

Example of playlist serialization file:
;---- following file header is required -----------------
FILETYPE=PG4UW SERIALIZATION PLAYLIST FILE

R references to serialization data files
[nav1] filel.dat
[nav2] file2.dat
[nav3] file3.dat

[label n] filex.dat
B end of file --------------mmmemem oo
For detailed and fully functional examples of From-file serialization files, look the examples

included with PG4UW, placed in installation directory in Examples\ subdirectory as following:
<PG4UW_inst_dir>\Examples\Serialization\fromfile_playlist_example\

100

(?ELE/GE 5] PG4UW

The typical path can look like this:
C:\Program Files\Elnec_sw\Programmer\Examples\Serialization\fromfile_playlist_example\

You can test the serialization by following steps:

start PG4UW

you need to have our programmer connected and correctly found in PG4UW

select wished device, the best are devices with erasable memory, (not OTP memory)
select dialog from menu Device / Device Options / Serialization

Set the From-fle mode and in the panel From-fle mode options select our example
serialization file fromfile_playlist.ser

click the OK button to accept the new serialization settings

run "Program" device operation

Nookw

© ©

You can see at the serialization indicating labels in the main window of PG4UW and also in
info progress window during device programming and repeating of programming.

Device / Device options / Serialization / Custom generator mode
Custom generator serialization mode provide maximum flexible serialization mode, because
the user have serialization system fully in his hands.

When Custom generator mode of serialization is selected, serial numbers are generated by
user made program “on-the-fly” before each device is programmed in PG4UW or PG4UWMC.
Custom generator mode serialization allows user to generate unique sequence of serial
numbers desired. Serial numbers can be incremented as a linear sequence or completely non-
linear sequence. The user made serial number generator program details are described later
in the following section Custom generator program.

Examples:
There are also example .exe and C/C++ source files available. The files are placed in the
PG4UW installation directory in Examples\ subdirectory as following:
<PG4UW_.inst_dir>\Examples\Serialization\customgenerator_example\
The typical path can look like this:
C:\Program Files\EIlnec_sw\Programmer\Examples\Serialization\customgenerator_example\

There are following options for Custom generator serialization in PG4UW control software:
In dialog Serialization select in Mode panel option Custom generator mode. The following
options will be displayed:

Serialization data file

Specifies the path and name for the data file that will contain the current serial number. When
device is to be programmed, the PG4UW software calls user made serial number generator
that updates the data file. The recommended extension of data file is .dat.

Because many of our customers use also BP Microsystems programmers, they ask us for
possibility to be used the same serialization software. Therefore the Serialization data file is
compatible with .dat files of "Complex serialization" system, available in BP Micro software.

Note: The data file is completely and periodically overwritten during device programming with

serialization. Be sure to enter the correct name of wished .dat file. Example:
“c:\serial_files\serial.dat".

101

Elnec s.r. 0.

Serialization generator
Specifies the path and name for the executable file which will generate serialization data file,
for example c:\serialization\generator.exe.

First serial number

This option is required to specify the initial serial number that will be passed to custom
generator serialization program. The format of serial number can be like hexadecimal number
or like any string that does not contain spaces, tabulators or CRLF characters.

Last serial number

This option specifies the maximum value of serial number allowed. If the value is no empty
string or is "0", it will be passed to serialization generator program. The generator is
responsible for testing the value of last serial number and generate serial .dat file with
appropriate error information in the serialization .dat file in case of current serial number
greater then last serial number. If the value of Last serial number is not specified or is zero "0",
the value will not be passed to generator program.

Check box Call generator with -RESULT parameter after device operation completed

This new option has special purpose. If there is requirement to call custom generator with
special parameter -RESULT, the check box should be checked. Otherwise it has to be
unchecked (the default state is unchecked). If checked, custom generator is called by PG4UW
control program after each device operation is completed; no matter the result of device
operation is OK or Error. Parameters for generator are created by PG4UW serialization
engine. Two parameters are used:

RESULT[n] =TRUE / FALSE -N <s/n>

where n is optional Programmer Site order number, if multiprogramming is used.

TRUE means that device operation was finished OK. FALSE means, that device operation was
finished with error.

N parameter contains serial number, for which the -RESULT is called.

For example call of

generator.exe -RESULT=TRUE -N1234

means operation was successfully finished for serial number 1234.

Button Call generator and test consequent data file syntax allows user to test current
setting by calling generator and analyse .dat file. It is useful to test settings before using them.

Custom generator program

Custom generator program or serialization generator is program that will generate the unique
sequence of serial numbers and write the serial data to serialization .dat file. This program is
made by user. The path and name of the serialization program must be specified in the
Serialization options dialog in Custom generator mode options.

The program will be called from PG4UW every time the new serial data have to be generated.
This is usually made before each device programming operation. PG4UW control program
passes command line parameters to serialization program and serialization program generates
serialization .dat file which is read by PG4UW control program. Following command line
parameters are used:

102

(?ELE/GE 5] PG4UW

generator.exe - N<serial number> - E<serial number>

N<serial number> Specifies current serial number, that generator has to use to create proper
serial data file. Generator must return the same value at line TO1l:<serial number> in data file.
More information about serialization .dat file format is available in the next section, few lines
lower.

Note: If PG4UW software detects difference between serial number passed to generator by -N
command line parameter and serial number specified in TO1:... record in data file created by
generator, serialization error will be reported.

E<serial number>specifies ending (or last) serial number. The parameter is only passed when
value of Last serial number specified in dialog Serialization in PG4UW software is no zero. The
serialization program should return error record T06 in the serialization .dat file, if the current
serial number is greater than ending serial number. For details look at section Serialization .dat
file format.

The name of executable file generator (generator.exe) can be replaced by any suitable user
specified name for generator application.

Serialization .dat file format
Serialization .dat file generated by serialization generator must meet following text format.
Serialization .dat file consists of records and serial data section.

Record is line, which begin with one of Txx prefixes as described bellow. Value of “xx”
represents the record type code. Records are used to inform PG4UW software about
serialization status (current and last serial numbers, serialization data and data format, errors,
etc.). Required records are records T01, TO2, TO3 and TO4. Other records are optional.

TOl:<serial number> Contains current serial number value passed to generator by
command line parameter -N<serial number>. The format of serial
numbers can be like hexadecimal number or like any string that does
not contain spaces, tabulators or CRLF characters.

T02:<serial number> Contains next serial number value, that PG4UW will use in next
serialization cycle. This value is generated by serialization generator
and informs PG4UW, which serial number will follow after current
serial number. The format of serial numbers can be like hexadecimal
number or like any string that does not contain spaces, tabulators or
CRLF characters.

T03:<data format code> Specifies the serialization data for