
PROGRAMMING NAND FLASH MEMORIES USING

ELNEC DEVICE PROGRAMMERS

Application note

August 2021

an_programming_nand_flash_using_elnec_programmers, version 1.1

AN: Programming NAND flash memories using Elnec device programmers

Disclaimer:

This application note describes how to program NAND flash devices using Elnec device programmers. Before

reading this document, user should be familiarized with NAND flash devices. There are plentiful sources available

through the web containing detailed informations about NAND flash internal organization, errors in NAND flash, basic

algorithms, etc. Study, please, your device datasheet thoroughly, at least.

This application note is provided by our technical support department to help our customers and is

provided “as-is”, without warranty of any kind, either expressed or implied. We reserve the rights to make

changes to the information available in this application note at any time and assume no liability for

applications assistance, customer product design and any damages arising from the use of this application

note.

This application note may refer to various products and brand names that may be claimed as property of their

respective owners.

Version 1.1/08.2021 Page 2 of 85

AN: Programming NAND flash memories using Elnec device programmers

CONTENTS

1. BRIEF COMMENTS ON NAND FLASH INWARDS..9

2. BRIEF COMMENTS ON INVALID BLOCKS...12

3. BRIEF COMMENTS ON BIT ERRORS...13

4. TWO FACTORS THAT PROGRAMMER RELIES ON..14

5. DATA ORGANIZATION IN PG4UW CONTROL SOFTWARE BUFFER..15

6. LOADING DATA INTO PG4UW CONTROL SOFTWARE BUFFER..16

6.1. LOADING MULTIPLE DATA IMAGES...17

7. ACCESS METHOD WINDOW... 18

7.1. INVALID BLOCK MANAGEMENT...19

7.1.1. Treat All Blocks.. 19

7.1.2. Skip IB... 20

7.1.3. Skip IB with map in 0-th block..21

7.1.4. Skip IB with excess abandon...22

7.1.5. RBA (Reserved Block Area)..22

7.1.6. Check IB without access...25

7.1.7. Check IB with Skip IB.. 25

7.1.8. Discard Invalid block(s) data..25

7.1.9. Multiple partitions with Skip IB...26

7.1.9.1. Partition definition file... 27

7.1.9.1.1. Qualcomm multiply partition format (*.mbn)..27

7.1.9.1.1.1. Procedure for two input files..28

7.1.9.1.1.2. Procedure for single input file..28

7.1.9.1.2. Comma separated values format (*.csv)...28

7.1.9.1.3. Group define format (*.def)...30

7.1.9.1.4. Loading Partition definition file..30

7.1.9.1.4.1. Error codes on Partition definition file load..33

7.1.9.2. Access Method window options validity in partitioning mode...33

7.1.9.3. Safe working procedure...34

7.1.10. Linux MTD compatible...34

7.1.11. Redirection with HW Look Up Table (LUT)..34

7.2. SPARE AREA USAGE.. 35

Version 1.1/08.2021 Page 3 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.2.1. Do not use... 35

7.2.2. User data... 35

7.2.3. User data with IB info forced..35

7.2.4. ECC – Hamming (by Samsung)..36

7.2.5. ECC – Hamming (2×256 byte frame) variant 1 and 2..37

7.3. DEVICE INTERNAL ECC CONTROLLER OPTIONS..40

7.3.1. Enable device internal ECC controller...40

7.4. USER AREA OPTIONS.. 40

7.4.1. User Area – Start Block... 41

7.4.2. User Area – Number of Blocks..41

7.4.3. User Area – Last Block..41

7.4.4. User Area – Max. Allowed Number of Invalid Blocks in Device...41

7.5. REQUIRED VALID BLOCKS AREA OPTIONS..42

7.5.1. Check Required Valid Blocks Area..42

7.5.2. Required Valid Blocks Area – Start Block..42

7.5.3. Required Valid Blocks Area – Number of Blocks...43

7.6. MAX. ALLOWED NUMBER OF INVALID BLOCKS IN DEVICE OPTIONS..43

7.6.1. Check Max. Allowed Number of Invalid Blocks in Device..43

7.6.2. Max. Allowed Number of Invalid Blocks in Device...43

7.7. BEHAVIOUR ON NEW INVALID BLOCK OPTIONS...44

7.7.1. If new invalid blocks is developed..44

7.8. TOLERANT VERIFICATION OPTIONS... 44

7.8.1. Use Tolerant Verify feature.. 45

7.8.2. ECC frame size... 45

7.8.3. Acceptable number of errors...45

7.8.4. Tolerant verify examples...45

7.9. INVALID BLOCK INDICATION OPTIONS (SIMPLIFIED VERSION)..46

7.9.1. Invalid Block Indication Byte Value..46

7.10. INVALID BLOCK INDICATION OPTIONS (EXTENDED VERSION)...47

7.10.1. Use customized invalid blocks indication scheme...48

7.10.2. Alternative block validity indication byte value for invalid block...48

7.10.3. Alternative block validity indication byte value for good block..48

7.10.4. Block validity indication byte offset on a page...49

7.10.5. Pages for block validity indication..49

7.10.6. Fill invalid block with predefined value...49

7.10.7. Invalid block filling value..49

7.11. RESERVED BLOCK AREA OPTIONS..50

7.11.1. RBA Table – Start Block..50

7.11.2. RBA Table – Number of Blocks...50

7.11.3. RBA Table should be located..50

7.12. LINUX MTD COMPATIBLE OPTIONS...51

Version 1.1/08.2021 Page 4 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.12.1. Write BBT to device... 51

7.12.2. BBT should be placed... 52

7.12.3. BBT should be placed starting from...52

7.12.4. Number of blocks reserved for BBT...52

7.12.5. PAGE numbers where BBT should be placed...52

7.12.6. Page numbers where Mirror BBT should be placed..53

7.12.7. BBT should be stored.. 53

7.12.8. Store BBT version counter... 53

7.12.9. BBT version counter Value..53

7.12.10. Number of bits used per block in BBT on device...53

7.12.11. Value used for RESERVED blocks marking..54

7.12.12. Use Smart Media bytes order for ECC..54

7.12.13. Apply MTD specific ECC on partition data...54

7.13. SPECIAL DEVICE FEATURES... 54

8. DEVICE OPERATION OPTIONS WINDOW..56

8.1. INSERTION TEST AND / OR ID CHECK..57

8.1.1. Insertion test.. 57

8.1.1.1. Basic test of IC functionality...57

8.1.2. Device ID check error terminates the operation...57

8.2. COMMAND EXECUTION.. 58

8.2.1. Erase before programming..58

8.2.2. Blank check before programming..58

8.2.3. Verify after reading.. 58

8.2.4. Verify after programming...59

8.3. SPECIAL DEVICE OPERATION OPTIONS..59

8.3.1. Target device uses.. 59

9. SPECIAL NAND FLASH COMMANDS...60

9.1. READ ONFI PARAMETER PAGE.. 60

9.2. READ JEDEC PARAMETER PAGE... 63

9.3. CHECK INVALID BLOCKS.. 65

10. USING MULTI-PROJECT FEATURE FOR NAND FLASH...66

10.1. WORKING WITH MULTI-PROJECT WIZARD...66

10.1.1. Defining the Project files for individual NAND partitions..68

10.1.2. Building the Multi-Project file...69

10.1.3. Running the multi-chip device operation..69

11. CUSTOMIZED NAND FLASH SUPPORT...70

11.1. PARTITIONING SCHEME.. 70

11.2. INVALID BLOCKS MANAGEMENT SCHEME...70

11.3. DYNAMIC META-DATA SCHEME... 71

11.4. PAGE ARRANGEMENT SCHEME... 71

Version 1.1/08.2021 Page 5 of 85

AN: Programming NAND flash memories using Elnec device programmers

11.5. ERROR CONTROL AND CORRECTION SCHEME...71

11.6. UNUSED BLOCKS FORMATTING SCHEME...72

11.7. INPUT DATA FILE SCHEME.. 72

12. FREQUENTLY ASKED QUESTIONS...73

12.1. DEVICE / BUFFER CONVERSIONS..73

12.1.1. Conversion of the device offset to the block number...73

12.1.2. Conversion of the device offset to the buffer offset..73

12.1.3. Conversion of the file size to the blocks count...74

12.1.4. Conversion of the block number to buffer offset..75

12.2. COPYING NAND FLASH MEMORY... 76

12.3. PROBLEMS WITH TOO MANY INVALID BLOCKS..77

12.3.1. How does your programmer identify invalid blocks?..77

12.3.2. When working with device, programmer reports tens (hundreds, thousands) of invalid blocks. Is it

normal?... 77

12.3.3. I have made a lot of invalid blocks in my device. Can I fix it somehow?..77

12.4. COMMAND EXECUTION DILEMMAS..78

12.4.1. Erase before programming..78

12.4.2. Blank check before programming..78

12.4.3. Verify after programming... 78

12.4.4. Pg4uw software recommends me to set more User Area blocks than I have set, saying it is more

effective. Is it OK?... 78

13. APPENDIX A: ERRORS IN NAND FLASH – THE BACKGROUND...79

13.1. MEMORY WEAR (ENDURANCE) ERRORS..79

13.2. READ DISTURB ERRORS.. 80

13.3. PROGRAM DISTURB ERRORS.. 81

13.4. OVER-PROGRAMMING ERRORS.. 82

13.5. DATA RETENTION ERRORS... 83

Version 1.1/08.2021 Page 6 of 85

AN: Programming NAND flash memories using Elnec device programmers

LIST OF FIGURES

Figure 1: NAND flash vs. NOR flash cell comparison..9

Figure 2: NAND flash internal structure...10

Figure 3: Invalid Block Map building flowchart...12

Figure 4: Buffer data layout, if spare area is not used...15

Figure 5: Buffer data layout, if spare area is used...15

Figure 6: Load file dialog window.. 16

Figure 7: Invalid Block Management options... 19

Figure 8: Treat All Blocks technique graphic representation..20

Figure 9: Skip IB technique graphic representation...21

Figure 10: Device layout depending of RBA Table should be located option value...23

Figure 11: RBA technique graphic representation...23

Figure 12: Multiple partitions with Skip IB technique graphic representation...27

Figure 13: Load partition table window.. 31

Figure 14: Example of partition table stored in buffer..31

Figure 15: Successful partition definition file load listing example in log window...32

Figure 16: Spare area usage options.. 35

Figure 17: ECC - Hamming (by Samsung) page segmentation example..36

Figure 18: ECC Hamming (by Samsung) spare area layout for small page (512+16 bytes)...36

Figure 19: ECC Hamming (by Samsung) spare area layout for large page (2 048+64 bytes).......................................36

Figure 20: Device internal ECC controller options...40

Figure 21: User Area options... 40

Figure 22: Required valid blocks area options...42

Figure 23: Max. allowed number of blocks in device options...43

Figure 24: Behaviour on new invalid block options..44

Figure 25: Tolerant verification options.. 45

Figure 26: Invalid block indication options (simplified version)..46

Figure 27: Invalid blocks indication options (extended version)...48

Figure 28: Reserved blocks area options..50

Figure 29: Linux MTD compatible options...51

Figure 30: Special device features menu example..54

Figure 31: Insertion test and ID check options...57

Figure 32: Command execution options..58

Figure 33: Special device operation options.. 59

Version 1.1/08.2021 Page 7 of 85

AN: Programming NAND flash memories using Elnec device programmers

Figure 34: Menu device... 60

Figure 35: Empty Pg4uw Multi-Project Wizard window..66

Figure 36: Multi-Project Wizard window with Multi-Project file loaded...69

Figure 37: A NAND flash block architecture..79

Figure 38: Wear-out (endurance) errors..80

Figure 39: Read disturb errors... 81

Figure 40: Program disturb errors.. 82

Figure 41: Over-programming errors... 83

Figure 42: Data retention errors... 84

Version 1.1/08.2021 Page 8 of 85

AN: Programming NAND flash memories using Elnec device programmers

1. BRI EF COM M EN T S O N NAND F L ASH I NWAR DS

• NOR flash and NAND flash cell difference (see Figure 1):

In NOR flash, each cell has one end connected directly to source line (ground), and the other end connected

directly to a bit line. This arrangement is called NOR flash because it acts like a NOR gate: when one of the

word lines is brought high, the corresponding storage transistor acts to pull the output bit line low.

In NAND flash the transistors are connected in a way that resembles a NAND gate: several transistors are

connected in series, and the bit line is pulled low only if all the word lines are pulled high. These groups are

then connected via some additional transistors to a NOR-style bit line array in the same way that single

transistors are linked in NOR flash.

• SLC, MLC, TLC, QLC…: These maginc acronyms stand for x-Level Cell technology. Theirs usage is,

however, rather confusing. Single Level Cell (SLC) uses 2 levels of electric charge to store 1 bit of

information (0 or 1). Multi Level Cell (MLC) uses 4 levels of electric charge to store 2 bits of information (00,

01, 10, 11). Triple Level Cell (TLC) uses 8 levels of electric charge to store 3 bits of information (000, 001,

Version 1.1/08.2021 Page 9 of 85

Figure 1: NAND flash vs. NOR flash cell comparison.

AN: Programming NAND flash memories using Elnec device programmers

010, 011, 100, 101, 110, 111). And finally Quad Level Cell (QLC) uses 16 levels of electric charge to store 4

bits of information. Converting of electric charge level to corresponding logic level is quite a difficult task, so

with increasing number of levels, the complexity of the converters increases, as well as the error rate.

• NAND flash internal structure (see Figure 2): The hierarchical structure of NAND Flash starts at a cell level

which establishes strings, then pages, blocks, planes and ultimately a die. A string is a series of connected

NAND cells in which the source of one cell is connected to the drain of the next one. Depending on the NAND

technology, a string typically consists of 32 to 128 NAND cells. Strings are organised into pages which are

then organised into blocks in which each string is connected to a separate line called a bit line. All cells with

the same position in the string are connected through the control gates by a word line. A plane contains a

certain number of blocks that are connected through the same bit line. A flash die consists of one or more

planes, and the peripheral circuitry that is necessary to perform all the read / write / erase operations.

• A NAND flash page consists of data area and spare area (in various sources may be referred also as

“redundant” or “out-of-boundary (OOB)” area). Typically, the data area is used to store a payload data, while

the spare area stores NAND flash management related data – ECC checksums, logical block / page

numbers, usage counters, etc.

• Erasing NAND flash: Flash memory allows only two states – erased and non-erased. Particular bit of data

can be written only if the media is in erased state. Once written, the bit is considered not usable for other

write operation. Write operation on flash device can be accomplished only on erased units, so a write

operation must be preceded by an erase operation. Only erase operation can revert programmed cells to

erased state. During the erase, all cells on a bit string (see Figure 2) are erased, forming a huge block of

flash – so called erase block. As a result, it is not possible to erase single cell in flash array. During the

erasing, the ready / busy signal (R/B# pin or ready / busy flag in STATUS register) is low to indicate that the

Version 1.1/08.2021 Page 10 of 85

Figure 2: NAND flash internal structure.

AN: Programming NAND flash memories using Elnec device programmers

device is in busy state. At the end of erase process, all cells in a block are checked if they are in erased state

and the result is reported via pass / fail flag in STATUS register.

• Programming NAND flash: NAND flash devices are programmed on a page-by-page basis. A page is written

into page register and then programmed into memory array. During the programming, the ready / busy signal

(R/B# pin or ready / busy bit in STATUS register) is low to indicate that the device is in busy state. At the end

of programming process, all bits on a page expected to be programmed to 0 are checked and the result is

reported in pass / fail flag in STATUS register.

• Reading NAND flash: NAND flash devices are read on a page-by-page basis. Bits in a flash cell array are

read by changing the voltage on rows and columns of cells followed by accessing the results. A page is

moved from flash cell array into page register. During a page preparation, the ready / busy signal (R/B# pin or

ready / busy bit in STATUS register) is low to indicate that the device is in busy state. After the page is ready,

data can be lifted out of the device.

Version 1.1/08.2021 Page 11 of 85

AN: Programming NAND flash memories using Elnec device programmers

2. BRI EF COM M EN T S O N I NVAL I D BL O CK S

 Invalid block (in various sources may be referred also as “bad block” or “damaged block”) is a block that contains

one or more permanently damaged memory cells.

 Presence of invalid block(s) does not affect the function of other blocks in device.

 There may be invalid blocks yet in new (not used before) device. Other invalid blocks may develop over time.

 Invalid block should not be used for programming – data may be lost.

 Invalid block should not be erased – information about its invalidity may be lost.

 There is BI byte somewhere in a block. Its location is specified by device manufacturer. For SLC devices, it is

typically in first spare area byte within first and / or second page in a block. For MLC devices, it is typically in first

spare area byte within first and / or last page in a block. But other locations are also used.

 Before any operation with device, all blocks must be screened for BI bytes values. This process is so-called

Invalid block map building. Typical flowchart:

 There are software techniques generally called invalid blocks management used for treatment of existing invalid

blocks. These techniques are relevant to know before pre-programming NAND flash device.

 There are software techniques generally called wear levelling management used for new invalid blocks

development prevention (see Wikipedia for more information). These techniques are used during end-appliance

usage and, usually, are not relevant to know before pre-programming NAND flash device.

Version 1.1/08.2021 Page 12 of 85

Figure 3: Invalid Block Map building flowchart.

https://en.wikipedia.org/wiki/Flash_memory#Memory_wear

AN: Programming NAND flash memories using Elnec device programmers

3. BRI EF COM M EN T S O N BI T E RRO RS

 Typically, bit errors are temporary errors and disappear after erase. Otherwise, respective block must be

considered invalid.

 Bit errors are native to NAND flash memories. They can be considered to be a drawback of NAND flash

technology. Typically, they occur due to an influence between adjacent memory cells.

 Bit errors may be detected and recovered. Various ECC algorithms are used for this purpose. Typical

representatives are Hamming, BCH (Bose – Chaudhuri – Hocquenghem) and RS (Reed – Solomon) algorithms

(see Wikipedia for more information on Hamming, BCH and RS).

 Individual ECC algorithms may be distinguished using several basic characteristics: the frame size (a number of

bytes / words covered by single application of the algorithm), the strength (a number of bit errors that can be

recovered in the frame of specified size) and the number of control bits / bytes (a size of overhead data).

 For each NAND flash device, the manufacturer specifies required minimum ECC parameters (e.g. 4 bit errors

recovery in 512 bytes frame). At least, an ECC algorithm capable to recover specified number of bit errors over

specified frame size must be used.

 Our programmers can support selected ECC algorithms. In addition, we offer customized implementations that

may support any ECC algorithm specified by customer. Also, a generalized solution is available – on verify, the

programmer may accept specified number of bit errors in specified number of bytes and suppose, that these bit

errors will be corrected by ECC algorithm in real application – see chapter Tolerant verification options.

See chapter Errors in NAND flash – the background for detailed information about NAND flash errors origin.

Version 1.1/08.2021 Page 13 of 85

https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction
https://en.wikipedia.org/wiki/BCH_code
https://en.wikipedia.org/wiki/Hamming_code

AN: Programming NAND flash memories using Elnec device programmers

4. TW O FA CTO RS T HAT P ROG R AMM E R REL I E S O N

 The user: Programmer will do only what user has ordered to do. Programmer can detect device boundary

exceeding, but cannot foretell e.g. a block from where data should start. Please, do not rely on default settings.

Those are just some general preferences originating from device parameters and algorithm simplifying rather

than from your particular needs.

 NAND flash device internal controller: The controller communicates with programmer via STATUS register. On

erase, the controller checks if all memory cells in a block are in erased state. If controller says that the block is

erased properly, programmer will rely on this information – none (significant time consuming) blank check is

performed after erase. If controller says that the block is not erased properly, programmer will consider that block

invalid – the block is treated regarding to selected invalid block management. On programming, the controller

checks if all page locations expected to be in 0 are really in 0. If controller says that the page is programmed

properly, programmer will continue with next page. If controller says that the page is not programmed properly,

programmer will consider related block invalid – the block is treated regarding to selected invalid block

management.

Version 1.1/08.2021 Page 14 of 85

AN: Programming NAND flash memories using Elnec device programmers

5. DATA O RG ANI Z AT I O N I N PG4UW CO NT RO L SO F T WAR E

B UF F E R

Data are stored in buffer as a continuous sequence of pages. Please, be aware of fact, that page spare area is

not included in normal device addressing. Control software buffer, however, uses linear addressing. This may lead to

hazardous misunderstandings resulting in incorrect data positioning in device. Compare, please, following pictures:

Considering a common NAND flash device with 2 048 + 64 bytes in a page and 64 pages in a block, the first

byte of second block in device will be addressed using offset 2 0000h in device, but using offset 2 1000h in buffer. It

is crucial to keep this in mind, especially if working with partitions.

Version 1.1/08.2021 Page 15 of 85

Figure 4: Buffer data layout, if spare area is not used.

Figure 5: Buffer data layout, if spare area is used.

AN: Programming NAND flash memories using Elnec device programmers

6. LO ADI NG DATA I NTO PG4UW CO NT RO L SO F T WA RE B UF F E R

Primarily, command File / Load (short-cut <F3>) should be used for input image loading into buffer. Software

can recognize plentiful data formats, however, for devices with capacity of 16 Gbit and more only raw binary mode

(*.BIN) may be supported.

Data image file should correspond with a copy of NAND flash device free of any invalid blocks. Depending on

other settings, it must or must not contain also spare area data. If selected mode requires spare area data and your

image does not contain it (relevant mainly for partitioning techniques), you can add blank (all FFh) spare area

automatically on image load allowing Add blank spare area option (see Figure 6, Additional operation panel). It is

important to select correct device firstly, since various devices may use different data area and spare area sizes and

control software always matches page layout of actually selected device. All other options available in Load File

window work in their usual way.

Version 1.1/08.2021 Page 16 of 85

Figure 6: Load file dialog window.

AN: Programming NAND flash memories using Elnec device programmers

6.1. LOADING MULTIPLE DATA IMAGES

If you need to load multiple data image files for single device (relevant mainly for partitioning techniques), you

may need to use Positive offset option (see Figure 6, Buffer offset for loading panel). You may compute the offset

using following formula:

positive_offset = block_number x pages_in_block x page_size

where:

block_number is the number of target block as is mapped in buffer. Blocks ordering in buffer may differ from

their real ordering in device, see buffer to device mapping in chapter dedicated to respective invalid blocks

management technique.

pages_in_block is the count of pages in one block, as is given in your NAND flash device datasheet.

page_size is the size of a page in bytes or words (for x8 or x16 devices, respectively), as is given in your NAND

flash device datasheet. The page size must, or must not include spare area size, depending on other settings.

This way you may load all your data images, file after file, and place them at correct locations in buffer.

Version 1.1/08.2021 Page 17 of 85

AN: Programming NAND flash memories using Elnec device programmers

7. ACC ESS M ET HO D W I NDO W

Version 1.1/08.2021 Page 18 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.1. INVALID BLOCK MANAGEMENT

Our programmers support several general invalid blocks management techniques. Not all techniques described

here are supported on all programmers. Any other invalid blocks management technique can be supported upon

user's request.

7.1.1. TREAT ALL BLOCKS

In past, we called this technique “Do not Use”, simply because none block validity related decision algorithm is

used. All blocks in device are processed identically, not regarding their real validity status.

The technique may be very helpful if dumping unknown data is necessary, e.g. for data recovery from broken

USB stick. It allows to create the image comprising all blocks in device for further analysis.

Proceed with caution!

Since this technique does not differentiate between valid and invalid blocks, you can suffer a damage!

On programming, programmer will try to write data also to invalid blocks. The operation might fail on verify after

programming (if enabled), however, if device is still used in end appliance, it might cause its malfunction.

On erase, programmer will try to erase also invalid blocks. This may damage BI bytes in invalid blocks, so

information about their invalidity might be lost. Programmer is rather simple device not capable to perform any

reliability tests similar to those one on manufacturing line, so it cannot recover this information.

Using Treat All Blocks technique, a number of blocks specified in option User Area – Number of Blocks will

be taken counting from buffer start, and programmed into device starting from a block specified in option User Area –

Start Block. The blocks will be programmed in device, not regarding theirs validity. If target block is invalid, data will

be lost. The number of blocks specified for processing does not necessarily have to be the same size as the size of

data loaded in buffer.

On device read, reciprocally, a number of blocks specified in option User Area – Number of Blocks will be read

from device starting from a block specified in option User Area – Start Block, not taking source blocks validity into

account, and stored into buffer counting from buffer start.

Version 1.1/08.2021 Page 19 of 85

Figure 7: Invalid Block Management options

AN: Programming NAND flash memories using Elnec device programmers

7.1.2. SKIP IB

This is the simplest technique used for treatment of invalid blocks. If target block is invalid, it is skipped and next

valid block is used instead. The next data are then programmed into (next+1)-th block. This will produce a shift in data

offset. The shift increases with each skipped invalid block. If there are too many invalid blocks in target device area,

not all data might be programmed. Excess data would be lost, therefore operation is halted at the first moment when

such a condition is recognized (typically on initial Invalid Blocks Map building).

Using Skip IB technique, a number of blocks specified in option User Area – Number of Blocks will be taken

counting from buffer start, and programmed into device starting from a block specified in option User Area – Start

Block. If target block is invalid, actual data will be programmed into next valid block, thus shifting all next data by

offset of one block. The number of blocks specified for processing does not necessarily have to be the same size as

the size of data loaded in buffer. If a block specified in option User Area – Last Block is reached and not all specified

blocks are programmed, operation is halted with error.

On device read, reciprocally, a number of blocks specified in option User Area – Number of Blocks will be read

from device starting from a block specified in option User Area – Start Block. Read data will be stored into buffer

counting from buffer start. If source block is invalid, it will be skipped (not processed) and programmer will continue

with next valid block. Data are stored in buffer continually, without gaps from invalid blocks, so the same image will be

created in buffer not regarding invalid blocks distribution over the device. If a block specified in option User Area –

Last Block is reached and not all specified blocks are read, operation will close with error.

Version 1.1/08.2021 Page 20 of 85

Figure 8: Treat All Blocks technique graphic representation.

AN: Programming NAND flash memories using Elnec device programmers

7.1.3. SKIP IB WITH MAP IN 0-TH BLOCK

This technique is for backward compatibility with algorithms developed for old NAND flash devices.

Very first NAND flash memories came without spare area, so it was not possible to store BI byte nor any other

validity mark out of payload data. Initial invalid blocks were forced to all zeros state. But after first device

programming, it was not possible to distinguish, whether the block is invalid or programmed with all zeros intentionally

(e.g. some variables initialization section). One of used solutions consisted in programming Invalid Blocks Map in first

device block (block #0000). All other behaviour is the same as for Skip IB technique.

The map uses one bit value to store information about one block. Bit 0 of byte 0 corresponds to block #0000, bit

1 of byte 0 corresponds to block #0001, …, bit 0 of byte 1 corresponds to block #0008, and so on until the device end.

If bit value = 1 then corresponding block is invalid.

You can display the same Invalid Blocks Map using menu command Buffer / View / Edit Buffer (short-cut <F4>)

and then clicking on Invalid Blocks Map tab.

Version 1.1/08.2021 Page 21 of 85

Figure 9: Skip IB technique graphic representation.

AN: Programming NAND flash memories using Elnec device programmers

7.1.4. SKIP IB WITH EXCESS ABANDON

This technique is very close to basic Skip IB technique, too. Recall, please, a possible data loss due to

excessive invalid blocks count in specified area. Skip IB with excess abandon technique does not generate error if

this lossy condition happen. Data that cannot be programmed will be simply abandoned (lost).

This technique may be useful for applications where multiple data copies are used as a mean of error protection.

Typical example is a bootloader storage. Another task where this technique may be useful is programming of various

file system related headers into unused (padding) blocks. It can process all valid blocks and will not finish with error

due to invalid blocks occurrence.

Compared to Treat All Blocks technique, Skip IB with excess abandon skips invalid blocks, so programmer

does not expect any data there and verify operation can still succeed.

7.1.5. RBA (RESERVED BLOCK AREA)

This is an another kind of invalid blocks management technique, based on replacement of invalid blocks.

Using this approach, the device is subdivided into three regions – user data area, reservoir of blocks for

replacement of invalid blocks from user data area, and an area reserved for redirection table (sometimes referred

also as table of substitutions). Normally, data are programmed into user data area. If target block is invalid, next free

valid block from reservoir is used instead. Redirection table is updated by new invalid-valid pair of blocks. Process

then continues with next block data and next block in user data area. After programming all required blocks,

redirection table is programmed into the area reserved for this purpose. In addition to information about redirected

block pairs, the table may also contain other kinds of data, like some identification header, version numbering, device

parameters information, etc.

Reserved block area technique, as is implemented in our programmers, is based on Samsung's algorithm and

works as is described in following paragraphs. You can exactly specify two areas of three in use – user area, where

data should be stored primarily; and RBA Table area, where redirection table should be stored. Reservoir is created

automatically, based on setting of option RBA Table should be located, see Figure 10.

Figure 11 illustrates buffer data to physical blocks assignment on example where RBA Table should be located

after reservoir. In the other case, the principle of blocks substitution will be the same, just areas allocation will differ,

see Figure 10.

Version 1.1/08.2021 Page 22 of 85

AN: Programming NAND flash memories using Elnec device programmers

Version 1.1/08.2021 Page 23 of 85

Figure 10: Device layout depending of RBA Table should be located option value: before Block

Reservoir (a) and after Block reservoir (b). There may be unused blocks accepted in grey areas.

Figure 11: RBA technique graphic representation.

AN: Programming NAND flash memories using Elnec device programmers

On programming:

A number of blocks specified in option User Area – Number of Blocks will be allocated for user data area,

starting from block specified in option User Area – Start Block. Another number of blocks specified in option RBA

Table – Number of Blocks will be allocated for redirection table, starting from block specified in option RBA Table –

Start Block. If RBA Table should be located = before Block Reservoir, all free blocks between redirection table

area and device end will be allocated for block reservoir. If RBA Table should be located = after Block Reservoir,

all free blocks between user data area and redirection table area will be allocated for block reservoir.

A number of blocks specified in option User Area – Number of Blocks will be taken counting from buffer start

and programmed into user data area in device, block by block. If target block is invalid, next free valid block from

block reservoir will be used instead. Blocks are picked-up from block reservoir in ascending order (from device start

towards device end), invalid blocks are not used. Redirection table in programmer memory will be updated. If there

are more invalid blocks in user data area than valid blocks in block reservoir, data loss will occur. In such case,

operation will be halted with error.

After programming specified number of data blocks, two copies (original and back-up) of redirection table (RBA

Table) will be programmed into redirection table area. Skip IB technique is used. If there are less than two valid

blocks in redirection table area, those two copies cannot be programmed and operation will be halted with error.

On read:

A number of blocks specified in option User Area – Number of Blocks will be allocated for user data area,

starting from block specified in option User Area – Start Block. Another number of blocks specified in option RBA

Table – Number of Blocks will be allocated for redirection table, starting from block specified in option RBA Table –

Start Block. If RBA Table should be located = before Block Reservoir, all free blocks between redirection table

area and device end will be allocated for block reservoir. If RBA Table should be located = after Block Reservoir,

all free blocks between user data area and redirection table area will be allocated for block reservoir.

Redirection table area will be searched for at least one valid copy of redirection table. If valid redirection table is

not found, operation is halted with error.

After successful RBA Table decoding, a number of blocks specified in option User Area – Number of Blocks

will be read from user data area and stored into buffer counting from buffer start. If source block is listed in redirection

table, its substitutive block will be read instead. If it is not possible to read specified number of blocks from user data

area + block reservoir, operation will close with error.

Redirection table format:

RBA Table consists of pages. Each page uses the same data field layout. Each data field is 16 bit wide, stored

using little endian format.

The first data field on a page is a header. The header is always of the same value FDFEh.

The second data field on a page is count field. Count field stores page sequence number, counting from 1 for

first page of first RBA Table copy and incrementing by one for each other page. For second RBA table copy, the

counter continues incrementing (if table uses e.g. 4 pages, count field value for first page of second RBA Table copy

will be 5).

Version 1.1/08.2021 Page 24 of 85

AN: Programming NAND flash memories using Elnec device programmers

Further, a page continues with invalid block – replacement block data field pairs. These pairs store numbers of

invalid blocks from user data area and theirs respective substitution blocks from blocks reservoir used for

replacement. Single page can hold information about (page_data_area_size – 4) / 4 redirections.

Unused bytes in RBA Table block are set to blank state FFh.

7.1.6. CHECK IB WITHOUT ACCESS

Check IB without access technique performs checks with regard to set rules, but does not execute any other

device access. For that reason, only programming command is available after confirming this technique. The

command is used for running the tests.

This technique may be used to simulate the programming, e.g. if you are going to perform initial programming of

the NAND flash device after assembling the end-appliance. In such case you may be interested in not using

memories with too much invalid blocks for assembly (thus minimizing the waste due to memory units of poor quality).

An area starting from block specified in option User Area – Start Block up to block specified in option User

Area – Last Block is scanned for invalid blocks.

If the count of invalid blocks in that area exceeds a number specified in option User Area – Max. Allowed

Number of Invalid Blocks in Device, an error is reported.

If the count of valid blocks in that area is less than a number specified in option User Area – Number of Blocks,

an error is reported.

If enabled, required valid blocks area is checked, see chapter Required Valid Blocks Area options.

If enabled, Max. Allowed Number of Invalid Blocks in Device is checked.

7.1.7. CHECK IB WITH SKIP IB

After performing all tests in the same manner as if Check IB without access technique has be used, Skip IB

technique will be used for accessing the device.

This technique may be helpful if you need to guarantee some number of unused valid blocks in user data area.

E.g. if you need to program 80 blocks into area of 100 blocks, standard Skip IB technique will accept 20 invalid

blocks in that area. But using Check IB with Skip IB technique, you may allow acceptance of only e.g. 10 invalid

blocks. Remaining 10 valid blocks may be used for further invalid blocks replacement during end-appliance lifetime.

7.1.8. DISCARD INVALID BLOCK(S) DATA

Note: This invalid blocks management technique can be activated only for techniques based on partitioning, and

only using *.CSV partition definition file.

Discard invalid block(s) data is a hybrid of Treat All Blocks and Skip IB techniques. If programmer meets

invalid block in device, it simply increases the pointer one block forward in both, device and buffer. Data belonging to

invalid block are discarded (ignored).

This technique is intended particularly for programming various bootloaders and data tables, when multiple

copies are used as an instrument of error protection.

Version 1.1/08.2021 Page 25 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.1.9. MULTIPLE PARTITIONS WITH SKIP IB

Note: This invalid blocks management technique offers wide range of options that were implemented in

successive steps. If enabled for discontinued programmers, it is called Qualcomm Multiple Partition (historical

reason).

In very simple words, this is Skip IB technique extended for allowance of multiple user data areas. This comes

with variety of new possibilities, but also with more complicated configuration and handling.

User data area is now called partition. All user data area settings have respective partition equivalent:

• User Area – Start Block → Partition start

• User Area – Number of Blocks → Used partition size

• User Area – Last Block → Partition end

There are several significant differences from Skip IB technique:

• Spare area data are always expected in buffer. If you do not use spare area, you may fill respective areas

by blank data on input image file load by enabling Add blank spare area feature, see chapter Loading data

into pg4uw control software buffer.

• Partition start data in buffer are now expected with the same offset as in device, i.e. Partition start value

specifies the partition beginning in both, device and buffer.

• Instead of specifying necessary options in Access Method window, partitions are specified via Partition

definition file.

• Only some of options available in Access Method window will be accepted during operation, see chapter

Access Method window options validity in partitioning mode.

• Probably, you will need to load several input data images, see chapter Loading multiple data images.

Using Multiple Partition with Skip IB technique, programmer will process each partition individually, in

increasing order. After programming or reading a partition, the same partition is verified (if enabled). Only after then, if

succeeded, the programmer will continue with next partition.

A number of blocks specified by value of Used partition size will be taken from buffer counting from a block

specified by value of Partition start. These data will be programmed into device starting from a block specified by

value of Partition start, too. If target block is invalid, actual data will be programmed into next valid block, thus

shifting all next data by offset of one block. If the block specified by value of Partition end is reached and not all

specified blocks are programmed, operation is halted with error.

On device read, reciprocally, a number of blocks specified by value of Used partition size will be read from

device starting from a block specified by value of Partition start. Read data will be stored into buffer counting from a

block specified by value of Partition start, too. If source block is invalid, it will be skipped (not processed) and

programmer will continue with next valid block. Data are stored in buffer continually, without gaps from invalid blocks,

so the same image will be created in buffer not regarding invalid blocks distribution over the partition. If the block

specified by value of Partition end is reached and not all specified blocks are read, operation will close with warning.

Version 1.1/08.2021 Page 26 of 85

AN: Programming NAND flash memories using Elnec device programmers

Figure 12 shows an example device with three partitions.

Partition 0 was programmed successfully. Two unused blocks left at partition end (also referred as padding

blocks) are enough for compensation of one invalid block found in device.

Partition 1 could not be programmed successfully. There is only one unused block left for invalid blocks

compensation, but two invalid blocks were found in device. In consequence, one data block was lost.

Partition 2 is a special kind of unused partition. In fact, it may be used later, by end-appliance itself, but it is not

programmed on pre-assembly programming. It may be just specified but not used, simply for your better orientation in

more complicated partitioning scheme. Or, there may be other options specified for this partition, providing some level

of device quality check (e.g. devices with too many invalid blocks in this partition may be rejected this way from

further processing).

7.1.9.1. PARTITION DEFINITION FILE

Partition definition file is used for instructing the programmer about how to allocate blocks for partitions, and

eventually, what further pre- or post-processing apply on partition. There are several different formats supported. All

partition definition file formats are described in following chapters.

7.1.9.1.1. QUALCOMM MULTIPLY PARTITION FORMAT (*.MBN)

Note: The support of this format is implemented based only on fragment of specification available from our

customer(s). Therefore it cannot be considered full and reliable. If you observe any problems, please, contact our

technical support with full MBN file format specification.

Version 1.1/08.2021 Page 27 of 85

Figure 12: Multiple partitions with Skip IB technique graphic representation.

AN: Programming NAND flash memories using Elnec device programmers

Generally, our programmers support two versions of Qualcomm Multiply Partition format. They can be simply

distinguished by the number of input files.

7.1.9.1.1.1. Procedure for two input files

If you have two input files available, they are generally named FactoryImage.bin and PartitionTable.mbn.

PartitionTable.mbn is rather small (typically 256 bytes) and contains partition table definition. Load this file

using menu File / Load Partition table, see chapter Loading Partition definition file. Actually, the maximum count

of supported partitions is 64.

FactoryImage.bin may be rather huge and contains binary data image. Load this file using standard Load

procedure, see chapter Loading data into pg4uw control software buffer.

It is possible to save data using this format. To save buffer content in binary format, use standard Save

procedure (menu File / Save, shortcut <F2> or Save command from Main toolbar). To save partition table in

Qualcomm Multiply Partition compatible format, use menu File / Save Partition table.

7.1.9.1.1.2. Procedure for single input file

If you have single input file available, it is generally named FactoryImage2.mbn. The file is rather huge and

contains both, partition table definition and binary data image, plus a header. The file can be simply identified using

hex-viewer – you must identify text “Image with header” at file start.

The header specifies also block validity indication byte position. This parameter is also accepted and used for

proper reading and / or verifying the device. The value overwrites manual settings in Block validity indication byte

offset on a page section of Access Method window.

Load this file using standard Load procedure, see chapter Loading data into pg4uw control software buffer.

It is not possible to save data using this format.

7.1.9.1.2. COMMA SEPARATED VALUES FORMAT (*.CSV)

Partition table definition file uses well-known comma separated values file format.

The file should contain a number of rows corresponding to the number of partitions. Each row specifies one

partition.

Values in row should be separated by separator – comma (,) or semicolon (;) may be used. Space characters

(ASCII code 20h) are ignored and should not be used in place of values separator.

Each row should contain several values (both, decimal and / or hexadecimal values can be used):

• Partition start (mandatory) – specifies the block in device where partition should start. Enter the block

number here.

• Partition end (mandatory) – specifies the block in device where partition should end. Enter the block number

here.

• Used partition size (mandatory) – specifies the number of blocks really occupied by partition data. Typically,

there are some reserve blocks added for invalid blocks replacement, therefore obviously partition_end –

partition_start > used_partition_size. Enter the count of blocks here.

• Special options / reserved (optional / mandatory) – this value enables to specify some special options. If

you use it just due to comment option usage, enter the value of FFFFFFFFh here to ensure future

compatibility (or 0xFFFFFFFF whichever form you prefer; keep 4 bytes size).

Version 1.1/08.2021 Page 28 of 85

AN: Programming NAND flash memories using Elnec device programmers

Special options specification:

MSB (bit 31) LSB (bit 0)

xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx.xxxx

bits 11:0 – Maximum allowed number of invalid blocks in partition:

• FFFh = feature disabled (default)

• any other value specifies the number of invalid blocks that can be accepted in partition

bits 15:12 – Invalid blocks management technique:

• 0 = Treat All Blocks

• 1 or Fh = Skip IB (default)

• 2 = Skip IB with excess abandon

• 3 = Check IB without access

• 4 = Discard Invalid block(s) data

Note: It is possible to specify an equivalent of Check IB with Skip IB technique using Skip IB (1h or Fh)

technique and non FFFh value for Maximum allowed number of invalid blocks in partition.

bits 22:16 – Reserved for future use, consider 7Fh value for future compatibility.

bit 23 – First block in partition must be good:

• 0 = if first block in respective partition is invalid, device is considered bad and operation is aborted

• 1 = feature disabled (default)

bits 27:24 – File system preparation:

• Fh = feature disabled (default)

• 0 = JFFS2 Clean Markers are written to unused blocks at respective partition end using MSB byte

ordering (big endian)

• 1 = JFFS2 Clean Markers are written to unused blocks at respective partition end using LSB byte

ordering (little endian)

bits 31:28 – Reserved for future use, consider Fh value for future compatibility.

Note: other values not specified here may be accepted for customized implementations, depending on

algorithm specification.

• Comment (optional) – you can enter any text here. Primarily, this item is intended for your notes that will help

you to orientate in the file. It may contain e.g. partition name. If you use comments, reserved option must be

also specified.

Version 1.1/08.2021 Page 29 of 85

AN: Programming NAND flash memories using Elnec device programmers

Partition table definition file example:

 0; 100; 20; 0xff7fffff; boot
101; 200; 50; 0xff7fffff; exec
201; 300; 0; 0xff7f3010; res1
301; 400; 50; 0xff7fffff; fsys
401; 500; 0; 0xff7f3010; res2
501; 1000; 50; 0xffffffff; data

For loading the table, use menu File / Load Partition table, see chapter Loading Partition definition file.

It is possible to save your partition table definition using this format. To save partition table data, use menu

File / Save Partition table. The table is saved using all values in row, a partition number is used for comment.

7.1.9.1.3. GROUP DEFINE FORMAT (*.DEF)

Note: The support of this format is implemented based only on fragment of specification available from

customer(s). Therefore it cannot be considered full and reliable. If you observe any problems, please, contact our

technical support with full DEF file format specification.

Partition table definition file consists of file header and group records. Each group record specifies one partition.

Load this partition table definition file using menu File / Load Partition table, see chapter Loading Partition

definition file.

It is possible to save your partition table definition file using this format. To save partition table data, use menu

File / Save Partition table.

7.1.9.1.4. LOADING PARTITION DEFINITION FILE

Use menu File / Load Partition table to open Load Partition table window. Filter your folder content using

partition definition file type mask. Select your file and press button Open.

Your partition definition file is then opened, decoded, checked, listed in log window and stored in special buffer

(use menu Buffer / View / Edit Buffer to display buffer window, then click on Partition Table tab).

Version 1.1/08.2021 Page 30 of 85

AN: Programming NAND flash memories using Elnec device programmers

Version 1.1/08.2021 Page 31 of 85

Figure 13: Load partition table window.

Figure 14: Example of partition table stored in buffer.

AN: Programming NAND flash memories using Elnec device programmers

Version 1.1/08.2021 Page 32 of 85

Figure 15: Successful partition definition file load listing example in log window (an example from

CSV format description was used).

AN: Programming NAND flash memories using Elnec device programmers

7.1.9.1.4.1. Error codes on Partition definition file load

During the partition definition file loading, several errors can occur. Errors are always displayed in pg4uw

log-window. Error message consists of error code and error description in the following form:

File loading problem!
Error code: #xxyy – error description

where xx stands for file format:

• 00 – binary file

• 01 – *.mbn file containing just partition table

• 02 – *.mbn file containing both, partition table as well as partitions data

• 03 – *.csv file containing partition table

• 04 – reserved for future use

• 05 – *.def file containing partition table

and yy stands for error type:

• 10 – disk i/o error (disk i/o error, file access error, ...)

• 11 – maximum buffer limit exceeded (file size grater than max. supported buffer size)

• 12 – unable to re-allocate buffer (file size is grater than buffer size and there is some problem when

reallocating the buffer (e.g. not enough disk space))

• 13 – unknown separator (for *.csv files, nor comma (,) nor semicolon (;) were detected as separator)

• 14 – file does not specify any partition (none partition definition read)

• 15 – too many partitions specified in file (max. 16 partitions are supported for Qualcomm Multiply

Partition, max. 64 partitions generally)

• 16 – incorrect numeric values format (typo in text-oriented files (*.csv), e.g. @34 instead of 234)

• 17 – version not supported (not supported version of algorithm specification detected)

• 18 – invalid file header (damaged header, some mandatory item missing, ...)

7.1.9.2. ACCESS METHOD WINDOW OPTIONS VALIDITY IN PARTITIONING MODE

Only some of options available in Access method window are valid if invalid block management technique

based on partitioning is applied. These are:

• Required Valid Blocks Area options

• Max. Allowed Number of Invalid Blocks in Device options

• Invalid Block Indication options (extended version)

• Tolerant verification options

• Special device features (if supported)

Please, see respective chapters for detailed informations.

Version 1.1/08.2021 Page 33 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.1.9.3. SAFE WORKING PROCEDURE

1. Select Multiple partitions with Skip IB in Access method window. It is very important to start with this

selection, since it triggers programmer and control software internal pre-settings. Only after then it is safe to

continue with next steps.

2. Prepare and load Partition definition file. In general, it does not matter what is loaded first – partition

definition file or input data image(s). But some customized implementations may pre-process input images

with respect to specifications in partition definition file, so it is safer to familiarize with operation sequence as

is listed here.

3. If necessary, set other options in Access method window, of those accepted in partitioning mode, see

chapter Access Method window options validity in partitioning mode.

4. Load input data into buffer, see chapter Access method window.

5. Save your settings and data into project file and test the operation.

7.1.10. LINUX MTD COMPATIBLE

This technique further extends Multiple partitions with Skip IB technique with a special feature used by MTD

driver in Linux-based operating systems – Bad Blocks Table (BBT). All features and procedures mentioned in

previous chapters dedicated to Multiple partitions with Skip IB technique are valid without any change. The difference

is a new options group available in Access Method window and accepted only if this technique is in use – Linux MTD

compatible options. Study, please, respective chapters to get complete information on how to use Linux MTD

compatible technique.

Limitations:

Only Hamming ECC algorithm is supported by our programmers, see chapter ECC – Hamming (2×256 byte

frame) variant 1 and 2. The algorithm can recover 1 bit error in 256 byte frame. If manufacturer prescribes more

powerful error protection for target NAND flash device, Linux MTD compatible technique is not allowed for such

device.

If you need to use another ECC algorithm, contact, please, our technical support with your demand.

See chapter Linux MTD compatible options for more information about available options.

7.1.11. REDIRECTION WITH HW LOOK UP TABLE (LUT)

This is a kind of redirection technique based on device internal hardware infrastructure. Once the block

redirection link is created, it is permanent. New valid block is accessible while still addressing original invalid block.

The technique is available only for devices providing necessary hardware support. See your device datasheet for

more information on this topic.

At time of this revision of the app-note release, we do not support HW-LUT for stacked (mutli-chip) devices.

Version 1.1/08.2021 Page 34 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.2. SPARE AREA USAGE

Our programmers support several modes of spare area usage. Any other spare area usage mode can be

supported upon user's request.

7.2.1. DO NOT USE

Do not use mode is about what its name means – spare area is not used. Data for spare area are neither

expected in buffer (see Figure 4 in chapter Loading data into pg4uw control software buffer) nor programmed in

or read from target device, respectively.

7.2.2. USER DATA

User data mode treats spare area as is, without any change. Spare area data are both, expected in buffer (see

Figure 5 in chapter Loading data into pg4uw control software buffer) and programmed in or read from device,

respectively.

This is default spare area usage mode for partitioning techniques (Multiple partitions with Skip IB and Linux

MTD compatible).

Important note:

Using this mode may lead to block validity information loss if BI byte is rewritten with any data different from FFh

(or FFFFh for x16 devices).

7.2.3. USER DATA WITH IB INFO FORCED

This is an extension of User data mode. Data from buffer are modified during programming with aim to keep

block validity information – the value at BI byte position is forced to FFh (or FFFFh for x16 devices).

User can change BI byte position from default using Invalid Block Indication options (extended version) and

related settings.

Version 1.1/08.2021 Page 35 of 85

Figure 16: Spare area usage options.

AN: Programming NAND flash memories using Elnec device programmers

7.2.4. ECC – HAMMING (BY SAMSUNG)

This spare area usage mode is based on Hamming ECC algorithm, as was proposed by Samsung some time

ago. You can access original documents also from our archive: 256 byte frame , 512 byte frame

Using ECC – Hamming (by Samsung) mode, spare area data are not expected in buffer. Programmer will add

spare data instead.

A page data area is segmented into 512 byte frames. Spare area is segmented into the same number of frames.

E.g. for typical 2 048 + 64 byte page, data area will be segmented into 4 frames of 512 bytes, and spare area into

corresponding 4 frames of 16 bytes each, see example on Figure 17.

For each frame in data area, ECC checksum is calculated using Hamming algorithm. This algorithm is capable to

detect up to 2 bit errors in a frame, and recover up to 1 bit error in a frame. The calculation produces 3 bytes of

checksum. Calculated checksum is inserted into spare area, see Figure 18 and Figure 19 for layouts. Reserved bytes

are not used and are left blank.

Version 1.1/08.2021 Page 36 of 85

Figure 17: ECC - Hamming (by Samsung) page segmentation example.

Figure 18: ECC Hamming (by Samsung) spare area layout for small page (512+16 bytes).

Figure 19: ECC Hamming (by Samsung) spare area layout for large page (2 048+64 bytes).

https://www.elnec.com/sw/samsung_ecc_algorithm_for_512b.pdf
https://www.elnec.com/sw/samsung_ecc_algorithm_for_256b.pdf

AN: Programming NAND flash memories using Elnec device programmers

On programming, ECC checksum is calculated and inserted into page buffer. Reserved bytes / words are kept

blank. Checksums are programmed into device.

On verifying, ECC checksum is calculated from data in buffer and inserted into temporary internal compare page

buffer. Device page is read as is and its spare area content is compared against calculated content in compare buffer.

On read, ECC checksum is calculated from read data and compared against checksum read from device.

Detected errors are repaired before storage in buffer, if possible.

7.2.5. ECC – HAMMING (2×256 BYTE FRAME) VARIANT 1 AND 2

This spare area usage mode is based on Hamming ECC algorithm, as is used in Linux MTD subsystem. It is the

same spare area usage mode, as can be specified for Linux MTD compatible technique using Apply MTD specific

ECC on partition data switch.

Using ECC Hamming (2×256 byte frame) mode, spare area data are not expected in buffer. Programmer will

add spare data instead.

A page data area is segmented into 256 byte frames. Spare area is not segmented (compare to ECC –

Hamming (by Samsung) mode).

For each frame in data area, ECC checksum is calculated using Hamming algorithm. This algorithm is capable to

detect up to 2 bit errors in a frame, and recover up to 1 bit error in a frame. The calculation produces 3 bytes of

checksum. Calculated checksum is inserted into spare area, see Table 1 to Table 3 for layouts.

ECC Hamming (2×256 byte frame) variant 1 to ECC Hamming (2×256 byte frame) variant 2 difference is as

follows:

In both cases, three bytes of checksum are calculated per data frame – ECC[0], ECC[1], ECC[2]. Variant 1

stores them in order ECC[0], ECC[1], ECC[2]. This corresponds to default layout used in Linux MTD driver. Variant 2

stores them in order ECC[1], ECC[0], ECC[2]. This corresponds to SmartMedia layout as can be specified for Linux

MTD compatible technique by Use Smart Media bytes order for ECC switch (or by

CONFIG_MTD_NAND_ECC_SMC switch in Linux MTD driver).

On programming, ECC checksum is calculated and inserted into page buffer. Reserved bytes / words are kept

blank. Checksums are programmed into device.

On verifying, ECC checksum is calculated from data in buffer and inserted into temporary internal compare

page buffer. Device page is read as is and its spare area content is compared against calculated content in compare

buffer.

On read, ECC checksum is calculated from read data and compared against checksum read from device.

Detected errors are repaired before storage in buffer, if possible.

Version 1.1/08.2021 Page 37 of 85

AN: Programming NAND flash memories using Elnec device programmers

Version 1.1/08.2021 Page 38 of 85

Table 1: ECC - Hamming (2x256 byte frame) variant 1 spare area layout for 512 + 16 byte

page (variant 2 differs in ECC[0] - ECC[1] ordering).

Offset Usage
0 Frame 0 – ECC[0]
1 Frame 0 – ECC[1]
2 Frame 0 – ECC[2]
3 Frame 1 – ECC[0]
4 Reserved
5 Reserved
6 Frame 1 – ECC[1]
7 Frame 1 – ECC[2]

8 ~15 Reserved

Table 2: ECC - Hamming (2x256 byte frame) variant 1 spare area layout for 2 048 + 64 byte

page (variant 2 differs in ECC[0] - ECC[1] ordering).

Offset Usage
0 ~ 39 Reserved

40 Frame 0 – ECC[0]
41 Frame 0 – ECC[1]
42 Frame 0 – ECC[2]
43 Frame 1 – ECC[0]
44 Frame 1 – ECC[1]
45 Frame 1 – ECC[2]
46 Frame 2 – ECC[0]
47 Frame 2 – ECC[1]
48 Frame 2 – ECC[2]
49 Frame 3 – ECC[0]
50 Frame 3 – ECC[1]
51 Frame 3 – ECC[2]
52 Frame 4 – ECC[0]
53 Frame 4 – ECC[1]
54 Frame 4 – ECC[2]
55 Frame 5 – ECC[0]
56 Frame 5 – ECC[1]
57 Frame 5 – ECC[2]
58 Frame 6 – ECC[0]
59 Frame 6 – ECC[1]
60 Frame 6 – ECC[2]
61 Frame 7 – ECC[0]
62 Frame 7 – ECC[1]
63 Frame 7 – ECC[2]

AN: Programming NAND flash memories using Elnec device programmers

Version 1.1/08.2021 Page 39 of 85

Table 3: ECC - Hamming (2x256 byte frame) variant 1 spare area layout for 4 096 + 128 byte

page (variant 2 differs in ECC[0] - ECC[1] ordering).

Offset Usage
0 ~ 79 Reserved

80 Frame 0 – ECC[0]
81 Frame 0 – ECC[1]
82 Frame 0 – ECC[2]
83 Frame 1 – ECC[0]
84 Frame 1 – ECC[1]
85 Frame 1 – ECC[2]
86 Frame 2 – ECC[0]
87 Frame 2 – ECC[1]
88 Frame 2 – ECC[2]
89 Frame 3 – ECC[0]
90 Frame 3 – ECC[1]
91 Frame 3 – ECC[2]
92 Frame 4 – ECC[0]
93 Frame 4 – ECC[1]
94 Frame 4 – ECC[2]
95 Frame 5 – ECC[0]
96 Frame 5 – ECC[1]
97 Frame 5 – ECC[2]
98 Frame 6 – ECC[0]
99 Frame 6 – ECC[1]
100 Frame 6 – ECC[2]
101 Frame 7 – ECC[0]
102 Frame 7 – ECC[1]
103 Frame 7 – ECC[2]
104 Frame 8 – ECC[0]
105 Frame 8 – ECC[1]
106 Frame 8 – ECC[2]
107 Frame 9 – ECC[0]
108 Frame 9 – ECC[1]
109 Frame 9 – ECC[2]
110 Frame 10 – ECC[0]
111 Frame 10 – ECC[1]
112 Frame 10 – ECC[2]
113 Frame 11 – ECC[0]
114 Frame 11 – ECC[1]
115 Frame 11 – ECC[2]
116 Frame 12 – ECC[0]
117 Frame 12 – ECC[1]
118 Frame 12 – ECC[2]
119 Frame 13 – ECC[0]
120 Frame 13 – ECC[1]
121 Frame 13 – ECC[2]
122 Frame 14 – ECC[0]
123 Frame 14 – ECC[1]
124 Frame 14 – ECC[2]
125 Frame 15 – ECC[0]
126 Frame 15 – ECC[1]
127 Frame 15 – ECC[2]

AN: Programming NAND flash memories using Elnec device programmers

Note: For Linux MTD compatible technique, there are always some data expected for spare area in buffer.

These may be user payload data or blank data only. Areas specified as “reserved” in foregoing tables are not affected

by ECC Hamming (2x256 byte frame) spare area usage mode. Existing data in those areas are preserved.

7.3. DEVICE INTERNAL ECC CONTROLLER OPTIONS

Some modern NAND flash devices incorporate built-in internal ECC controller. It is a special hardware logic

device capable to compute ECC checksums for programmed pages, as well as to detect and repair errors for read

pages. The option is displayed only for devices equipped with internal ECC controller.

Important note:

If internal ECC controller usage is enabled on target device, it may come to conflict with spare area data in

buffer. In such case, buffer data will be ignored (lost). Always check ECC checksums layout used by internal ECC

controller and avoid conflicts while working with target NAND flash device equipped with built-in ECC controller.

7.3.1. ENABLE DEVICE INTERNAL ECC CONTROLLER

Confirm the check-box to enable target device internal ECC controller.

Default value: Disabled

7.4. USER AREA OPTIONS

There are several options available for specification of processed device area. In below form, they can be used

for non-partitioning invalid blocks techniques. See chapter Multiple partitions with Skip IB for their partitioning

equivalents.

Version 1.1/08.2021 Page 40 of 85

Figure 20: Device internal ECC controller options.

Figure 21: User Area options.

AN: Programming NAND flash memories using Elnec device programmers

7.4.1. USER AREA – START BLOCK

Option User area – start block specifies the ordinal number of physical block in target device where user data

area should start. If the block specified here is invalid, real user data area start may be shifted or redirected in

practice, depending on invalid blocks management technique in use.

Blank check and erase operations do not take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default value: 0 (device block #0000)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.4.2. USER AREA – NUMBER OF BLOCKS

Option User area – number of blocks specifies the count of valid physical blocks in target device that should be

accessed. If the count specified here cannot be accomplished due to excessive invalid blocks occurrence in device,

operation may be aborted with error, depending on invalid blocks management technique in use.

Blank check and erase operations do not take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default value: 98% of all blocks in target device (typically, manufacturers guarantee less than 2% of invalid

blocks, mainly for SLC devices), or minimum valid blocks count in device if specified in target device datasheet

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.4.3. USER AREA – LAST BLOCK

Option User area – last block specifies the ordinal number of physical block in target device that operation must

not exceed. Device area beyond this block must not be accessed. If operation reaches the block specified here and

expected count of valid blocks was not processed yet, operation may be aborted with error, depending on invalid

blocks management technique in use.

Blank check and erase operations do not take this option into account – they always process all or all valid

blocks in target device, depending on invalid blocks management technique in use.

Default value: last physical block in device

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.4.4. USER AREA – MAX. ALLOWED NUMBER OF INVALID BLOCKS IN DEVICE

Option User area – max. allowed number of invalid blocks specifies the maximum count of invalid blocks

allowed to occur between User Area – Start Block and User Area – Last Block. If the count specified here is

exceeded, operation will be aborted with error.

Version 1.1/08.2021 Page 41 of 85

AN: Programming NAND flash memories using Elnec device programmers

Blank check and erase operations do not take this option into account – respective check is not performed.

Default value: A difference from default User Area – Number of Blocks and all blocks in target device.

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.5. REQUIRED VALID BLOCKS AREA OPTIONS

Required valid blocks area options may be used to specify a special area where no one invalid block is allowed.

A typical usage of reserved valid blocks area is to preserve uninterrupted bootloader programming into target device

first blocks.

Before an operation on target device starts, specified area is checked for invalid blocks presence. If there is any

invalid block found there, operation is aborted with error.

These options are accepted by all invalid blocks management techniques except for Treat All Blocks.

Blank check and erase operation do not take required valid block area into account – they always process all or

all valid blocks in target device, depending on invalid blocks management technique in use.

7.5.1. CHECK REQUIRED VALID BLOCKS AREA

Confirm the check-box to enable required valid blocks area check feature. If the check-box is not confirmed, the

settings of other related options are irrelevant.

Default value: Disabled

7.5.2. REQUIRED VALID BLOCKS AREA – START BLOCK

Option Required valid blocks area – start block specifies the ordinal number of physical block in target device

where required valid blocks area should start. Blocks before the one specified here will be not considered on check.

Default value: 0

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

Version 1.1/08.2021 Page 42 of 85

Figure 22: Required valid blocks area options.

AN: Programming NAND flash memories using Elnec device programmers

7.5.3. REQUIRED VALID BLOCKS AREA – NUMBER OF BLOCKS

Option Required valid blocks area – number of blocks specifies the count of physical blocks in target device

that must be valid, counting from Required valid blocks area – start block.

Default value: 1

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.6. MAX. ALLOWED NUMBER OF INVALID BLOCKS IN DEVICE OPTIONS

The feature is useful, if you need to reject devices with too many invalid blocks from usage. If enabled, the count

of invalid blocks found in entire target device is evaluated and if preset threshold is exceeded, the device is rejected

from further usage. After that, other target device quality features are applied.

For example, the programmer may be instructed to reject device if (ordered by evaluation sequence):

• there are more than 20 invalid blocks in device globally – see Max. allowed number of of invalid blocks in

device – evaluated once, before operation start;

• there are more than 5 invalid blocks in used area – see User Area – Max. Allowed Number of Invalid

Blocks in Device – evaluated continually, as new invalid blocks may be developed during programming

and / or erasing;

• there is any invalid block in first 10 used blocks – see chapter Required Valid Blocks Area options –

evaluated continually, as new invalid blocks may be developed during programming and / or erasing.

7.6.1. CHECK MAX. ALLOWED NUMBER OF INVALID BLOCKS IN DEVICE

Confirm the check-box to enable the feature. If the check-box is not confirmed, the settings of other related

options are irrelevant.

Default value: Disabled

7.6.2. MAX. ALLOWED NUMBER OF INVALID BLOCKS IN DEVICE

Option Max. allowed number of invalid blocks in device specifies the count of physical blocks in target device

that are allowed to be invalid.

Default value: 2 % of total blocks count in device (or total blocks count in device – (minus) minimum valid blocks

count in device, if specified in datasheet this way).

Version 1.1/08.2021 Page 43 of 85

Figure 23: Max. allowed number of blocks in device options.

AN: Programming NAND flash memories using Elnec device programmers

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.7. BEHAVIOUR ON NEW INVALID BLOCK OPTIONS

The feature specifies the programmer behaviour in case if new invalid block is developed during operation.

Important note:

Technically, only program and erase operations are capable to invoke new invalid blocks formation as they apply

the highest voltage across the memory cells array. Read, verify and blank check operations may produce only

reversible errors. This is a matter of internal NAND flash device operation, not of programmer's action. Programmer

may just react on events inside of target device.

7.7.1. IF NEW INVALID BLOCKS IS DEVELOPED

Select from drop-down menu:

• abort operation immediately – if new invalid block occurs during operation, the programmer will halt

immediately with error;

• mark it invalid and continue operation – if new invalid block occurs during operation, it will be marked

invalid and operation will continue by applying invalid blocks management technique rules.

Default value: mark it invalid and continue operation

7.8. TOLERANT VERIFICATION OPTIONS

Tolerant verification is intended as a substitution of unknown ECC algorithm.

In practice, end-appliance may use any ECC algorithm that meets requirements prescribed by target device

manufacturer. Bit flip-flops during read will be detected and recovered by this algorithm.

On the other side, the programmer need not necessarily be aware of used ECC algorithm. User may prepare

data image including correct ECC sums in spare area and write it into target device using User data mode. In such a

case, it is possible to simulate ECC algorithm behaviour by enabling Tolerant Verify feature. The programmer will

close his eyes to as many errors as the ECC algorithm can recover.

On erase, programming and read operations, the feature has no effect on programmer behaviour.

Version 1.1/08.2021 Page 44 of 85

Figure 24: Behaviour on new invalid block options.

AN: Programming NAND flash memories using Elnec device programmers

On verify and blank check operations, the programmer will tolerate preset count of bit errors in a frame of

specified size. If the condition is violated, verify error (or blank check error, respectively) is generated.

7.8.1. USE TOLERANT VERIFY FEATURE

Confirm the check-box to enable tolerant verification.

Default value: enabled

7.8.2. ECC FRAME SIZE

Specifies the frame size in bytes, as is used by ECC algorithm. Frame size should be specified in terms of bytes

for both x8 and x16 devices. Only those frame sizes will be accepted leading to integer frame count in page data

area.

Default value: datasheet default (device dependent, typically 512 bytes)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.8.3. ACCEPTABLE NUMBER OF ERRORS

Specifies the count of bit-errors in a frame that ECC algorithm is capable to recover.

Default value: datasheet default (device dependent, typically 1, 4 or 8 bits)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.8.4. TOLERANT VERIFY EXAMPLES

Example 1:

Let have a page of 2 048 data bytes + 128 spare bytes.

Tolerant verify parameters are 512 byte ECC frame size and 8 accepted errors.

Programmer will consider entire page as 4 full frames and 1 quarter frame (in spare area). In full frames, up to 8

erroneous bits will be accepted. On 9-th bit error found the error will be reported. For the last frame of quarter size,

also quarter number of errors will be tolerated, i.e. up to 2 erroneous bits in this example.

Version 1.1/08.2021 Page 45 of 85

Figure 25: Tolerant verification options.

AN: Programming NAND flash memories using Elnec device programmers

Note: non-integer number of accepted errors for partial frame is always rounded up to next higher integer.

Example 2:

Let have a page of 2 048 data bytes + 128 spare bytes.

Tolerant verify parameters are 64 byte ECC frame size and 1 accepted error.

Programmer will consider entire page as 34 full frames – 32 frames in data area and other 2 frames in spare

area. For each frame, max. 1 erroneous bit will be accepted.

7.9. INVALID BLOCK INDICATION OPTIONS (SIMPLIFIED VERSION)

Invalid blocks indication options allow to customize the way of invalid blocks marking in device.

Important note:

Please, keep in mind, that initial invalid blocks often cannot be reprogrammed, so this is only an alternative way.

In consequence, there may exist two kinds of invalid blocks marking schemes in programmed device – one using

manufacturer original marking specified in target device datasheet (initial invalid blocks), and other using the marking

specified here (acquired invalid blocks).

Also, please, keep in mind, that invalid block is invalid because it failed on program or erase operation. It might

be not possible to write required mark due to that failure.

7.9.1. INVALID BLOCK INDICATION BYTE VALUE

Specifies the value of BI byte used by programmer for marking invalid blocks developed during program and / or

erase operations:

• 00h (0000h for x16 devices) – default value used by our programmers (datasheets typically specify a

non-FFh value);

• F0h (F0F0h for x16 devices) – the value used in SmartMedia for acquired invalid blocks marking.

Default value: 00h (0000h for x16 devices)

Version 1.1/08.2021 Page 46 of 85

Figure 26: Invalid block indication options (simplified version).

AN: Programming NAND flash memories using Elnec device programmers

7.10. INVALID BLOCK INDICATION OPTIONS (EXTENDED VERSION)

Invalid blocks indication options allow to customize the way of invalid blocks marking in device. This may be very

useful e.g. if an application uses data layout different from device physical page layout. For example, application may

work with a page of 512+16+512+16+512+16+512+16 bytes on target device with page of 2 048+64 bytes. In such

case, device original BI byte will belong to last data frame and some another byte may be used for block validity

marking (e.g. byte with page offset 517).

Before the operation start, target device may be scanned for invalid blocks in two ways:

• before program and blank test operation: manufacturer original indication scheme is expected;

• before read, verify and erase: customized indication scheme is expected.

Anyhow, the real scheme in device should be indicated using Target device uses option in Device operation

options window window.

On programming:

• initial invalid blocks are left as they are (they might be not rewritable nevertheless);

• acquired initial invalid blocks (if any) are marked using preset scheme;

• valid blocks are marked automatically by user data content or by programmer (if User data with IB info

forced is used).

On erasing blank device:

• initial invalid blocks are left as they are (they might be not rewritable nevertheless);

• acquired initial invalid blocks (if any) are marked using preset scheme.

On erasing programmed device:

• programmer will try to rewrite invalid blocks to some generally recognisable format, i.e. it will fill all

locations in first two pages of an invalid block to 00h.

Important note:

Please, keep in mind, that initial invalid blocks often cannot be reprogrammed, so this is only an alternative way.

In consequence, there may exist two kinds of invalid blocks in programmed device – one using manufacturer original

marking specified in target device datasheet (initial invalid blocks), and other using the marking specified here

(acquired invalid blocks).

Also, please, keep in mind, that invalid block is invalid because it failed on program or erase operation. It might

be not possible to write required mark due to that failure.

Version 1.1/08.2021 Page 47 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.10.1. USE CUSTOMIZED INVALID BLOCKS INDICATION SCHEME

Confirm the check-box to enable customized invalid blocks indication scheme usage. If enabled, please, keep in

mind also target device state specification in Device operation options window window <Alt+O> menu, see Target

device uses option.

Default value: Disabled

7.10.2. ALTERNATIVE BLOCK VALIDITY INDICATION BYTE VALUE FOR INVALID BLOCK

Specifies the value of BI byte (BI word for x16 devices) used by programmer for marking invalid blocks

developed during program and / or erase operations.

Default value: 00h (0000h for x16 devices)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.10.3. ALTERNATIVE BLOCK VALIDITY INDICATION BYTE VALUE FOR GOOD BLOCK

Specifies the value of BI byte (BI word for x16 devices) used by programmer for marking valid blocks. BI byte will

be rewritten during programming:

• automatically by programmer, if User data with IB info forced spare area usage mode is in use;

• by user data, if User data spare area usage mode is in use.

Default value: FFh (FFFFh for x16 devices)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

Version 1.1/08.2021 Page 48 of 85

Figure 27: Invalid blocks indication options (extended version).

AN: Programming NAND flash memories using Elnec device programmers

7.10.4. BLOCK VALIDITY INDICATION BYTE OFFSET ON A PAGE

Specifies BI byte (BI word for x16 devices) offset on a page, in a term of bytes (words for x16 devices), counting

from page start = offset 0.

Default value: first spare area byte (word for x16 devices)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.10.5. PAGES FOR BLOCK VALIDITY INDICATION

Specifies up to three pages in a block used for BI byte (BI word for x16 devices) recognition.

Default value: datasheet default (device dependent)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.10.6. FILL INVALID BLOCK WITH PREDEFINED VALUE

Confirm the check-box to enable filling all positions in invalid blocks by predefined value (see Invalid block

filling value below).

Default value: Disabled

Note: If both, Fill invalid block with predefined value and Use customized invalid blocks indication

scheme are enabled, invalid block will be filled with predefined value on programming, and customized scheme will

be used for invalid blocks recognition before operation start (depending on Target device uses setting).

7.10.7. INVALID BLOCK FILLING VALUE

Specifies the value used for filling invalid blocks.

Default value: 00h (0000h for x16 devices)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

Version 1.1/08.2021 Page 49 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.11. RESERVED BLOCK AREA OPTIONS

Note: See chapter RBA (Reserved Block Area) for detailed information about related invalid blocks

management technique.

7.11.1. RBA TABLE – START BLOCK

Specifies the number of first physical block in device reserved for redirection table programming.

Default value: last physical block in device – (minus) 15 blocks

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.11.2. RBA TABLE – NUMBER OF BLOCKS

Specifies the count of physical blocks in device reserved for redirection table programming.

Default value: 15 blocks (we considered this a safe value)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.11.3. RBA TABLE SHOULD BE LOCATED

Specifies the areas layout in device (see Figure 10):

• after Block Reservoir – redirection table should be located after the reservoir, i.e. the layout is as

follows: user data area, block reservoir, redirection table area;

• before Block Reservoir – redirection table should be placed before the reservoir, i.e. the layout is as

follows: user data area, redirection table area, block reservoir.

Default value: after Block Reservoir

Version 1.1/08.2021 Page 50 of 85

Figure 28: Reserved blocks area options.

AN: Programming NAND flash memories using Elnec device programmers

7.12. LINUX MTD COMPATIBLE OPTIONS

Notes: Related invalid blocks management technique is not supported for devices that require ECC with more

than 1 bit error correction in 256 byte frame (only Hamming ECC algorithm is supported).

These options allow BBT customization. If there is any symbol name in capitals used in parenthesis (e.g.

NAND_USE_FLASH_BBT), it corresponds with the same symbol defined in MTD driver.

See also chapter Linux MTD compatible.

7.12.1. WRITE BBT TO DEVICE

Enables / disables BBT write. Confirm the check-box to enable BBT storage in device.

Default value: Enabled.

Note: There are always two BBT copies used (BBT and Mirror BBT), as is specified in MTD driver. If it is not

possible to write both copies (e.g. due to too many invalid blocks in BBT area), operation is halted with error.

Version 1.1/08.2021 Page 51 of 85

Figure 29: Linux MTD compatible options.

AN: Programming NAND flash memories using Elnec device programmers

7.12.2. BBT SHOULD BE PLACED

Specifies, whether BBT should be placed by programmer or by user:

• at specified page – programmer will write BBT into exactly specified pages;

• automatically – programmer will try to place BBT into suitable block within specified area automatically.

Default value: Automatically.

7.12.3. BBT SHOULD BE PLACED STARTING FROM

Specifies BBT area location in BBT auto-placement mode:

• device start – BBT should be placed in first device blocks;

• device end – BBT should be placed in last device blocks.

Default value: Device end.

7.12.4. NUMBER OF BLOCKS RESERVED FOR BBT

Specifies the size of BBT area in BBT auto-placement mode in terms of device physical blocks.

Default value: 4 (MTD driver default value)

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

Example:

For device with 1 024 blocks and default settings (BBT at device end, 4 blocks) last 4 blocks in device will be

reserved for BBT storage, i.e. blocks #1020, #1021, #1022 and #1023.

7.12.5. PAGE NUMBERS WHERE BBT SHOULD BE PLACED

Specifies the page (or list of pages for multi target devices) where BBT (original version) should be stored in

manual-placement mode. Enter page ordinal number(s) here, counting from page 0.

Default value: first page of last target block

Example:

List of pages example for multi target devices:

page_in_target0, page_in_target1, page_in_target2, …, page_in_target(N-1)

Let have a device with 4 targets (CE# pins), with 8 192 blocks per target and 64 pages in a block. We want to put

BBT in first page of block #8191, i.e. page #524224. The pages list will be as follows:

524224, 524224, 524224, 524224

Version 1.1/08.2021 Page 52 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.12.6. PAGE NUMBERS WHERE MIRROR BBT SHOULD BE PLACED

Specifies the page (or list of pages for multi target devices) where Mirror BBT (a copy) should be stored in

manual-placement mode. Enter page ordinal number(s) here, counting from page 0.

Default value: first page in last but one target block

7.12.7. BBT SHOULD BE STORED

Specifies device area covered by single BBT:

• per device – one common BBT should be used for all chips in device;

• per chip – one BBT should be used for each chip in device.

Default value: for single chip devices: per device (irrelevant); for multi chip devices: per chip

7.12.8. STORE BBT VERSION COUNTER

Enables / disables version counter storage. Confirm the check-box to enable version numbering.

Default value: Enable.

Note: Version counter is incremented by one on each BBT update. In case of power failure during BBT update

process, one table copy might be not actualized. On next system boot, BBT or Mirror BBT will be used (if both can be

read successfully) based of higher version counter value. This way, the most actual system state will be preserved.

7.12.9. BBT VERSION COUNTER VALUE

Specifies initial BBT version counter value.

Default value: 0

Note: Both, decimal and hexadecimal forms are accepted for this option (e.g. 1023, 3FFh, 0x3FF – you can use

the form whichever you prefer). For hexadecimals, suffix “h” or prefix “0x” must be used, as is shown in example.

7.12.10. NUMBER OF BITS USED PER BLOCK IN BBT ON DEVICE

Specifies the count of bits used to store the status of single block in BBT.

• 1 bit – 0b = invalid block, 1b = good block;

• 2 bits – 00b = invalid block, 01b = reserved block, 10b = worn-out block, 11b = good block;

• 4 bits – 0000b = invalid block, 0011b = reserved block, 1100b = worn-out block, 1111b = good block;

• 8 bits – 00000000b = invalid block, 00001111b = reserved block, 11110000b = worn-out block,

11111111b = good block.

Default value: 2 bits

Version 1.1/08.2021 Page 53 of 85

AN: Programming NAND flash memories using Elnec device programmers

7.12.11. VALUE USED FOR RESERVED BLOCKS MARKING

Typically, reserved blocks are for system internal use only and are highlighted in RAM version of BBT, but not in

its copy stored in flash device. They appear as normal good blocks in device based BBT. This setting specifies the

value used for reserved blocks.

Default value: 00h (reserved block = good block)

7.12.12. USE SMART MEDIA BYTES ORDER FOR ECC

Confirm the check-box to enable Smart Media ECC control sums formatting. See chapter ECC – Hamming

(2×256 byte frame) variant 1 and 2 for more detailed information.

Default value: Disabled.

7.12.13. APPLY MTD SPECIFIC ECC ON PARTITION DATA

Enables / disables on-the-fly ECC application during the action. Though spare area is build automatically if

enabled, respective (blank) data are still expected in buffer. See chapter ECC – Hamming (2×256 byte frame)

variant 1 and 2 for more detailed information.

Default value: Disabled.

7.13. SPECIAL DEVICE FEATURES

Special device features is a common container for plentiful device dependent features. Particular feature is

available in the menu only if following conditions are both met:

Version 1.1/08.2021 Page 54 of 85

Figure 30: Special device features menu example.

AN: Programming NAND flash memories using Elnec device programmers

• device supports the feature;

• corresponding support is implemented for your device.

Note: Many of these features are only supported by a few devices, features with the same name may be used

by different manufacturers for different purposes, and also the same function from the same manufacturer may have

different parameters on different devices. Therefore, the description of particular features is out of the scope of this

application note. Please, always follow the information from your device datasheet carefully.

Version 1.1/08.2021 Page 55 of 85

AN: Programming NAND flash memories using Elnec device programmers

8. DEVI C E OP ERAT I O N O PT IO NS W I NDO W

Version 1.1/08.2021 Page 56 of 85

AN: Programming NAND flash memories using Elnec device programmers

8.1. INSERTION TEST AND / OR ID CHECK

8.1.1. INSERTION TEST

Enables / disables signal continuity check.

Default value: Enable.

Note: Please, be aware of static character of this test. It is capable to detect device misplacing and / or severe

integrity fault between programmer's ZIF and device. But it might not detect soft polluted and / or oxidized contact as

to which may fully manifest only at high-speed operation. Therefore it is a rule of thumb to check and clean all

contacts on adapter(s) and device in case of verify after programming problems. The other important rule is to not

overuse programming adapters – respect, please, adapter's ZIF socket lifetime specified in adapter manual.

8.1.1.1. BASIC TEST OF IC FUNCTIONALITY

This is extended test of signal integrity performed automatically as an integral part of insertion test. Programmer

successively selects each device chip, activates first page reading and tries to read few bytes. On first read, data bus

is held in pull-up, while on second in pull-down.

Possible errors are reported as follows:

Basic test of IC functionality – error!
Possible reason: bad or unreliable contacts (CE=xx/EC=yy).

where xx stands for chip number (a number of pin CE#);

and yy stands for following errors:

• 01 – respective R/B# pin did not fall to L after READ command entering;

• 02 – respective R/B# pin did not come back to H after READ command entering within expected time-

out;

• 03/Data=PU/PD – read with data bud in pull-up differs from read with data bus in pull-down; respective

data are shown.

8.1.2. DEVICE ID CHECK ERROR TERMINATES THE OPERATION

Enables / disable operation halting on ID check error.

Default value: Enable.

Note: ID check error may point to error in device selection and / or insertion. Ignoring it may lead to inserted

device and / or programmer damage. Disable this option only if you are sure of what you are doing.

Version 1.1/08.2021 Page 57 of 85

Figure 31: Insertion test and ID check options.

AN: Programming NAND flash memories using Elnec device programmers

8.2. COMMAND EXECUTION

8.2.1. ERASE BEFORE PROGRAMMING

Enables / disables device erasing before programming. It is possible to erase all blocks, or all valid blocks,

depending on invalid block management technique set, before the programming begins. The entire device is always

erased, settings specified in User Area options section are ignored.

Default value: Disable.

8.2.2. BLANK CHECK BEFORE PROGRAMMING

Enables / disables device erase check before programming. It is possible to check the erasure of a ll blocks or all

valid blocks, depending on invalid block management technique set, before the programming begins. The entire

device is always checked, settings specified in User Area options section are ignored.

Default value: Disable.

Note: Invalid block has, at least, one non-FFh byte. Therefore blank checking of invalid block will always fail to

blank check error. We do not recommend to use Blank check before programming together with Treat All Blocks

invalid blocks management technique.

Note: NAND flash devices contain internal controller that manages all device operations. The operation state is

indicated in STATUS register. If block erase command is finished with PASS status, it means, that all memory cells in

respective block are in erased state, i.e. blank. Therefore, Blank check before programming operation is skipped if

it is enabled together with Erase before programming. See also chapter Two factors that programmer relies on.

8.2.3. VERIFY AFTER READING

Enables / disables read data verification. During the read operation, data are stored in buffer. After successful

read operation, all accessed blocks are read again and data are compared against previous read data in buffer.

Default value: Enable.

Version 1.1/08.2021 Page 58 of 85

Figure 32: Command execution options.

AN: Programming NAND flash memories using Elnec device programmers

8.2.4. VERIFY AFTER PROGRAMMING

Enables / disables verification of programmed data against data in buffer. After successful programming

operation, all accessed blocks are read and data are compared against data in buffer.

Default value: Enable.

Note: Programmer verifies all pages in a block, including blank pages.

8.3. SPECIAL DEVICE OPERATION OPTIONS

8.3.1. TARGET DEVICE USES

Specifies the way of invalid blocks indication used in target device.

• manufacturer original invalid blocks indication scheme – data in device respect BI bytes as they are

specified in device datasheet;

• customized invalid blocks indication scheme – data in device use a scheme specified by customer,

see also chapter Invalid Block Indication options (extended version).

Default value: Manufacturer original invalid blocks indication scheme.

Version 1.1/08.2021 Page 59 of 85

Figure 33: Special device operation options.

AN: Programming NAND flash memories using Elnec device programmers

9. SP ECI AL NAND F L AS H COM M AN DS

Note: Following commands can be accessed through menu Device.

9.1. READ ONFI PARAMETER PAGE

Note: The feature availability is device dependent.

ONFI standards (see http://www.onfi.org for more information about Open Nand Flash Interface working group)

involve a special memory page containing detailed data about device identification, memory array arrangement,

timing parameters, special features supported, etc. This page can be read using Read ONFI parameter page

command. After parameter page is successfully read, it is decoded and outputted in comprehensible form to a text file

stored on your desktop.

Version 1.1/08.2021 Page 60 of 85

Figure 34: Menu device.

http://www.onfi.org/

AN: Programming NAND flash memories using Elnec device programmers

ONFI parameter page report example:

ELNEC ONFI Decoder
2018.Nov.19 13:03:39

ID read from device from address 0x00:
 2C 44 44 4B A9 00 00 00
ID read from device from address 0x20:
 4F 4E 46 49

Revision information and features block
 Parameter page signature: 'ONFI'
 Revision number: 0x003E
 ONFI version 1.0
 ONFI version 2.0
 ONFI version 2.1
 ONFI version 2.2
 ONFI version 2.3
 Features supported: 0x01D8
 supports multi-plane program and erase operations
 supports odd to even page Copyback
 supports multi-plane read operations
 supports extended parameter page
 supports program page register clear enhancement
 Optional commands supported: 0x03FF
 supports Page Cache Program command
 supports Read Cache commands
 supports Get Features and Set Features
 supports Read Status Enhanced
 supports Copyback
 supports Read Unique ID
 supports Change Read Column Enhanced
 supports Change Row Address
 supports Small Data Move
 supports Reset LUN
 Extended parameter page length: 0x0003
 Number of parameter pages: 0x1D

Manufacturer information block
 Device manufacturer: 'MICRON '
 Device model: 'MT29F32G08CBADAWP '
 JEDEC manufacturer ID: 0x2C
 Date code: Y:0 W:0

Memory organization block
 Number of data bytes per page: 8192
 Number of spare bytes per page: 744
 Obsolete - Number of data bytes per partial page: 0
 Obsolete - Number of spare bytes per partial page: 0
 Number of pages per block: 256
 Number of blocks per logical unit (LUN): 2128
 Number of logical units (LUNs): 1
 Number of address cycles: 0x23
 Row address cycles: 3
 Column address cycles: 2
 Number of bits per cell: 2
 Bad blocks maximum per LUN: 74
 Block endurance: 3 x 10^3
 Guaranteed valid blocks at beginning of target: 1
 Block endurance for guaranteed valid blocks: 0
 Number of programs per page: 1
 Obsolete - Partial programming attributes: 0
 Number of bits ECC correctability: 255
 Number of plane address bits: 1
 Multi-plane operation attributes: 0x1E
 no block address restrictions
 program cache supported
 Address restrictions for cache operations
 read cache supported
 EZ NAND support: 0x00
 none

Electrical parameters block
 I/O pin capacitance, maximum: 7
 Asynchronous timing mode support: 0x003F

Version 1.1/08.2021 Page 61 of 85

AN: Programming NAND flash memories using Elnec device programmers

 supports timing mode 0, shall be 1
 supports timing mode 1
 supports timing mode 2
 supports timing mode 3
 supports timing mode 4
 supports timing mode 5
 Obsolete - Asynchronous program cache timing mode support: 0
 tPROG Maximum page program time (us): 2500
 tBERS Maximum block erase time (us): 12000
 tR Maximum page read time (us): 90
 tCCS Minimum change column setup time (ns): 200
 Source synchronous timing mode support: 0x0000
 none
 Source synchronous features: 0x00
 none
 CLK input pin capacitance, typical: 0
 I/O pin capacitance, typical: 53
 Input pin capacitance, typical: 42
 Input pin capacitance, maximum: 10
 Driver strength support: 0x07
 supports driver strength settings
 supports 25 Ohm drive strength
 supports 18 Ohm drive strength
 tR Maximum multi-plane page read time (us): 90
 tADL Program page register clear enhancement tADL value (ns): 70
 tR Typical page read time for EZ NAND (us): 0

Vendor block
 Vendor specific Revision number: 0x0001
 Vendor specific (in Hex form):
 01 00 00 00 04 10 01 81
 04 02 02 01 1E 90 08 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 02

Integrity CRC: 0x1D55

Parameter page dump (in Hex form):
 4F 4E 46 49 3E 00 D8 01 FF 03 00 00 03 00 1D 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 4D 49 43 52 4F 4E 20 20 20 20 20 20 4D 54 32 39
 46 33 32 47 30 38 43 42 41 44 41 57 50 20 20 20
 2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 20 00 00 E8 02 00 00 00 00 00 00 00 01 00 00
 50 08 00 00 01 23 02 4A 00 03 03 01 00 00 01 00
 FF 01 1E 00 00 00 00 00 00 00 00 00 00 00 00 00
 07 3F 00 00 00 C4 09 E0 2E 5A 00 C8 00 00 00 00
 00 00 35 00 2A 00 0A 07 5A 00 46 00 00 00 00 00
 00 00 00 00 01 00 01 00 00 00 04 10 01 81 04 02
 02 01 1E 90 08 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 02 55 1D

Version 1.1/08.2021 Page 62 of 85

AN: Programming NAND flash memories using Elnec device programmers

9.2. READ JEDEC PARAMETER PAGE

Note: The feature availability is device dependent.

JEDEC standard (see https://www.jedec.org for more information) is very similar to ONFI standards. It also

specifies a special memory page containing detailed data about device identification, memory array arrangement,

timing parameters, special features supported, etc. This page can be read using Read JEDEC parameter page

command. After parameter page is successfully read, it is decoded and outputted in comprehensible form to a text file

stored on your desktop.

JEDEC parameter page report example:

ELNEC JESD Decoder
2018.Nov.19 13:09:21

ID read from device from address 0x00:
 2C 44 44 4B A9 00 00 00
ID read from device from address 0x40:
 4A 45 44 45 43 01 00 00

Revision information and features block
 Parameter page signature: 'JESD'
 Revision number: 0x0003
 Reserved (0)
 supports vendor specific parameter page
 Features supported: 0x0000
 none
 Optional commands supported: 0x000000
 none
 Secondary commands supported: 0x0000
 Number of Parameter Pages: 0

Manufacturer information block
 Device manufacturer: 'MICRON '
 Device model: 'MT29F32G08CBADAWP '
 JEDEC manufacturer ID: 0x2C0000000000

Memory organization block
 Number of data bytes per page: 8192
 Number of spare bytes per page: 744
 Number of data bytes per partial page (MICRON specific): 1024
 Number of spare bytes per partial page (MICRON specific): 93
 Number of pages per block: 256
 Number of blocks per logical unit (LUN): 2128
 Number of logical units (LUNs): 1
 Number of address cycles: 0x23
 Row address cycles: 3
 Column address cycles: 2
 Number of bits per cell: 2
 Number of programs per page: 1
 Multi-plane addressing: 0x01
 Number of plane address bits: 1
 Multi-plane operation attributes: 0x07
 No multi-plane block address restrictions
 program cache supported
 read cache supported

Electrical parameters block
 Asynchronous SDR speed grade: 0x003F
 supports 100 ns speed grade (10 MHz)
 supports 50 ns speed grade (20 MHz)
 supports 35 ns speed grade (~28 MHz)
 supports 30 ns speed grade (~33 MHz)
 supports 25 ns speed grade (40 MHz)
 supports 20 ns speed grade (50 MHz)
 Toggle Mode DDR and NV-DDR2 speed grade: 0x0000
 none

Version 1.1/08.2021 Page 63 of 85

https://www.jedec.org/

AN: Programming NAND flash memories using Elnec device programmers

 Synchronous DDR speed grade: 0x0000
 none
 Asynchronous SDR features: 0x00
 Toggle-mode DDR features: 0x00
 Synchronous DDR features: 0x0000
 none
 tPROG Maximum page program time (us): 2500
 tBERS Maximum block erase time (us): 12000
 tR Maximum page read time (us): 90
 tR Maximum multi-plane page read time (us): 90
 tCCS Minimum change column setup time (ns): 200
 I/O pin capacitance, typical: 53
 Input pin capacitance, typical: 42
 CK pin capacitance, typical: 0
 Driver strength support: 0x07
 supports 35ohm/50ohm driver strength
 supports 25 Ohm drive strength
 supports 18 Ohm drive strength
 tADL Program page register clear enhancement tADL value (ns): 0

ECC and endurance block
 Guaranteed valid blocks at beginning of target: 1
 Block endurance for guaranteed valid blocks: 0
 ECC and endurance information block 0
 Number of bits ECC correctability: 40
 Codeword size: 10
 Bad blocks maximum per LUN: 74
 Block endurance: 771
 Reserved (0): 0
 ECC and endurance information block 1
 Number of bits ECC correctability: 0
 Codeword size: 0
 Bad blocks maximum per LUN: 0
 Block endurance: 0
 Reserved (0): 0
 ECC and endurance information block 2
 Number of bits ECC correctability: 0
 Codeword size: 0
 Bad blocks maximum per LUN: 0
 Block endurance: 0
 Reserved (0): 0
 ECC and endurance information block 3
 Number of bits ECC correctability: 0
 Codeword size: 0
 Bad blocks maximum per LUN: 0
 Block endurance: 0
 Reserved (0): 0

Vendor specific block
 Vendor specific Revision number: 0x0001
 Vendor specific (in Hex form):
 08 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00

Integrity CRC: 0xD0AA

Parameter page dump (in Hex form):
 4A 45 53 44 03 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 4D 49 43 52 4F 4E 20 20 20 20 20 20 4D 54 32 39
 46 33 32 47 30 38 43 42 41 44 41 57 50 20 20 20
 2C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 20 00 00 E8 02 00 04 00 00 5D 00 00 01 00 00
 50 08 00 00 01 23 02 01 01 07 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 3F 00 00 00 00 00 00 00 00 C4 09 E0 2E 5A 00 5A
 00 C8 00 35 00 2A 00 00 00 07 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Version 1.1/08.2021 Page 64 of 85

AN: Programming NAND flash memories using Elnec device programmers

 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 01 00 00 28 0A 4A 00 03 03 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

9.3. CHECK INVALID BLOCKS

This special NAND flash command screens all blocks in device for their validity status. Collected statuses are

outputted to a file stored on your desktop, together with basic device quality statistics.

Block numbers are displayed with regard to device as a whole as well as with regard to respective chip.

Similarly, overall and chip statistics are displayed.

Note: The feature accepts settings in section Invalid Block Indication options (extended version) if enabled

also in Target device uses option.

Check invalid blocks report example:

Check invalid blocks - report:

>> 28.11.2013, 17:03:29
Checking invalid blocks: Toshiba TH58NVG5H0ETA20 [TSOP48].

Device contains 2 chips with 8192 blocks each.

Invalid blocks listing:
Total block no. | Chip no. | Block no.
----------------+----------+----------
 5368 | 0 | 5368
 9641 | 1 | 1449
 10133 | 1 | 1941
----------------+----------+----------

Invalid blocks count:
Chip no. 0: 1
Chip no. 1: 2

Device : 3

Invalid blocks percentage:
Chip no. 0: 0,01 % (of chip blocks count)
Chip no. 1: 0,02 % (of chip blocks count)
--
Device : 0,02 % (of device blocks count)

Invalid blocks distribution ratio:
Chip no. 0: 33,33 % (of total invalid blocks count)
Chip no. 1: 66,67 % (of total invalid blocks count)

Version 1.1/08.2021 Page 65 of 85

AN: Programming NAND flash memories using Elnec device programmers

10. USI NG MULT I -PRO JE CT F EAT U RE F O R NAND F L ASH

Multi-Project feature was intended for multi-chip devices, like e.g. NAND flash and NOR flash packed in single

package. The feature allows to create individual project files for each particular memory in such multi-chip device,

pack them together into single Multi-project file and then program all chips on single button click. If we consider

several partitions in single NAND flash instead of several independent chips in one package, we will get new

possibilities how to solve complex requirements for programming NAND flash partitions, even on programmers that

do not support partitioning invalid blocks management techniques. For detailed information of Multi-Project feature,

consult our application note freely available from our website https://www.elnec.com/sw/an_elnec_multi_prj.pdf.

10.1. WORKING WITH MULTI-PROJECT WIZARD

Multi-Project Wizard is a dedicated tool for working with Multi-Project files. The Multi-Project file can be created

only using Multi-Project Wizard (see Figure 35). The Wizard can be accessed from Pg4uw menu

Options / Multi-Project Wizard, or using a key short-cut <Ctrl+M>.

Version 1.1/08.2021 Page 66 of 85

Figure 35: Empty Pg4uw Multi-Project Wizard window.

https://www.elnec.com/sw/an_elnec_multi_prj.pdf

AN: Programming NAND flash memories using Elnec device programmers

The Wizard allows following main features:

• building new Multi-Project file;

• loading existing Multi-Project file;

• running the multi-chip device operation, according to actual Multi-Project file.

The Multi-Project Wizard window contains following controls:

Button Load Multi-Project file

Loads existing Multi-Project file.

Button Build Multi-Project file

Builds new Multi-Project file from selected Project files.

Button Device info

Shows short device info (if available).

Buttons for device operations – Blank, Verify, Program, Erase

These buttons are used to run the selected multi-chip device operation

according to Project files. Read operation is not supported in Multi-Project

mode.

Button Help

Shows Help window with brief assistance on using Multi-Project Wizard.

Button Close

Terminates the Multi-Project Wizard. After closing, the “unselected” device is

automatically selected in Pg4uw software.

Button Add project

Adds existing Project file into selected Project files list, making it ready for later

Multi-Project file building.

Button Remove project

Removes the Project file from selected Project files list.

Version 1.1/08.2021 Page 67 of 85

AN: Programming NAND flash memories using Elnec device programmers

Button Move up

Moves the Project file one position up in selected Project files list. When

running the Multi-Project file, individual Project files are processed in order

according to selected Project files list.

Button Move down

Moves the Project file one position down in selected Project files list.

Button Job Report

Creates job report. For more information consult your programmer manual or

File / Make Job Report paragraph in Pg4uw help.

Button Configuration

The button is displayed only if Multi-Project file is loaded and ready for

operation. It switches the Wizard back to Multi-Project file build state.

10.1.1. DEFINING THE PROJECT FILES FOR INDIVIDUAL NAND PARTITIONS

Firstly you need to create respective project files for each one desired partition. You can employ any options

available for NAND flash (in appropriate manner). You can mix partitions with various Invalid Block Management

techniques, Spare area usage modes, you can even embed partitions into a partition…

Notes:

The projects are executed in an order as they are arranged at Building the Multi-Project file. Please, keep this

in mind when using features like Erase before programming and / or Blank check before programming, which are

always performed on entire device. Do not allow these operations in a project other that the first on the list.

Similarly, there may be various protections and device / block locks available for target device. Once enabled,

they may prevent from further programming. Do not allow such options in a project other then the last on the list.

If Spare Area Usage setting is set to User Data for certain partition, a plenty of invalid blocks may be found by

programmer when processing all subsequent partitions (it depends on programmed data content). The only effect will

be a long listing in control software log window. This will not affect the quality of the programming process for

subsequent partitions, since invalid blocks before start block are ignored.

• Firstly, display the Select device window and list for desired NAND flash device. Select the device.

• Display Access method window, key short-cut <Alt+S>. Set appropriate features according to your needs.

Follow the information in earlier chapters of this application note for particular options.

• Display Device operation options window, key short-cut <Alt+O>. Select the proper settings.

• Load the data file(s) into buffer (see chapter Loading data into pg4uw control software buffer).

• Save (and test) the Project file for the partition.

Version 1.1/08.2021 Page 68 of 85

AN: Programming NAND flash memories using Elnec device programmers

This way prepare the Project files for all your partitions. Once all Project files are saved you can build the Multi-

Project file.

10.1.2. BUILDING THE MULTI-PROJECT FILE

Having Project files available for all partitions, you can build the Multi-Project file.

• Launch Multi-Project Wizard (see Figure 35) using <Ctrl+M> shortcut or Options / Multi-Project Wizard

menu.

• Add required Project files using Add project button.

• If necessary, rearrange the Project files execution order using buttons Move up and Move down.

• An accidentally added Project file(s) can be discarded using Remove project button.

• After completion of Project files selection, use Build Multi-Project file button to start the building process.

Once having Multi-Project file available, you can simply load it into Multi-Project Wizard using Load Multi-

Project file button.

10.1.3. RUNNING THE MULTI-CHIP DEVICE OPERATION

After building or loading Multi-Project file into Multi-Project Wizard, you can run desired operation by clicking on

respective Blank, Verify, Program, Erase button that are now available in Wizard window (see Figure 36). This will

start the sequence of Project files loading and operations execution.

Version 1.1/08.2021 Page 69 of 85

Figure 36: Multi-Project Wizard window with Multi-Project file loaded.

AN: Programming NAND flash memories using Elnec device programmers

11. CUSTO MI Z E D NAND F L ASH S UPPO R T

Sometimes it is not possible to achieve the required parameters of programming / processing the device invalid

blocks / loading (decoding) input data using freely available functions. In such case it is necessary to proceed to a

customized implementation. At Elnec, we have extensive experience in supporting custom algorithms.

In order for this support to be successful and its implementation as fast as possible, it is necessary to specify a

few things, which are addressed in following chapters. We called these things “schemes”.

The requirements can be so diverse that we cannot put together a simple form where it would be enough to click

a few boxes. Use your own words when compiling the specification, attach the source code if necessary. It is

important that all seven schemes are explained (or marked as unused).

11.1. PARTITIONING SCHEME

Typically, different types of data are programmed into a NAND flash memory device. It may be necessary to

process these different types of data using different approaches. Each type of data may also need to start at a

specific location. See chapter Multiple partitions with Skip IB for detailed information about partitions.

The following must be specified:

• the number of partitions;

• each partition start block and last block (also the number of used blocks if it is known);

• type of invalid blocks management technique for each partition;

• first block in partition must be good, max. allowed number of invalid blocks and other partition specific

requirements (see chapter Comma separated values format (*.csv) for more details);

• partition table definition file format;

• any other partition related technicalities not mentioned here.

11.2. INVALID BLOCKS MANAGEMENT SCHEME

It is necessary to specify in detail how the programmer should proceed if he encounters an invalid block during

the operation. See chapter Invalid Block Management for more details about standard techniques available.

The following must be specified:

• how to recognize an existing bad block;

• how to mark a new bad block that appears during an operation;

• how to select a replacement block;

Version 1.1/08.2021 Page 70 of 85

AN: Programming NAND flash memories using Elnec device programmers

• how and where to record the replacement (exact format of the redirection table, if used);

• any other invalid blocks related technicalities not mentioned here.

11.3. DYNAMIC META-DATA SCHEME

Dynamic meta-data are all the data that need to be prepared on-the-fly during the operation, because their

essence does not allow to prepare them into buffer in advance. Mainly those are various serial numbers, MAC

addresses, file system headers, bad block tables,…

Note: ECC and other error protection techniques are part of a separate chapter, see Error control and

correction scheme.

The following must be specified:

• what types of dynamic meta-data are used;

• exact location and size of each dynamic meta-data unit;

• exact procedure for obtaining the value of each dynamic meta-data;

• any other dynamic meta-data related technicalities not mentioned here.

11.4. PAGE ARRANGEMENT SCHEME

Different application processors work with NAND flash page in different ways – some respect the natural

technological page segmentation into data and spare areas, others work with the page as a whole. Some processors

add their own meta-data to the page. Sometimes it is necessary to apply some way of BI byte repositioning. ECC

checksums are placed at different offsets, sometimes concentrated in one place, other times scattered throughout the

page.

Sometimes the situation is further complicated by requests from higher layers of the file system for various

headers in dedicated pages in a block.

If the programmer should do anything more than simply take a page from the buffer and write it to the device, all

of the above must be clearly specified.

The following must be specified:

• all used types of pages (block header, data,...);

• all types of data on each page type (meta-data, data, checksum, any counter, padding, unused,…);

• offsets and sizes for all corresponding data entries on a page;

• BI byte (block validity indication byte) position, if is changed from datasheet default;

• any other page arrangement related technicalities not mentioned here.

11.5. ERROR CONTROL AND CORRECTION SCHEME

Usually one of the three ECC algorithms is used – Hamming, BCH, RS. Each of them is characterized by a

number of parameters that the programmer must know if it should calculate the checksums on its own. ECC is

Version 1.1/08.2021 Page 71 of 85

AN: Programming NAND flash memories using Elnec device programmers

sometimes extended by adding some checksum of CRC type. The best way how to communicate the ECC / CRC

algorithm is to provide us with the source code.

The following must be specified:

• the type of ECC and / or CRC algorithm in use;

• all parameters of that algorithm(s) – bit recovery capability, generator polynomial, frame size,…;

• checksums positioning on a page;

• any other error protection related technicalities not mentioned here.

11.6. UNUSED BLOCKS FORMATTING SCHEME

Sometimes it is necessary to format unused (empty) blocks in a partition in some way. Such requests are usually

introduced by the file system (JFFS2, UBI / UBIFS).

The following must be specified:

• what the required formatting should look like (what data to which positions in the block should be

written);

• how to calculate or from where to draw the relevant formatting data;

• it is very helpful to indicate who is the requester of that formatting (file system type,…);

• any other unused blocks related technicalities not mentioned here.

11.7. INPUT DATA FILE SCHEME

Ideally, the input data file should contain a “mirror” of the contents of the memory. Because NAND flash memory

capacities are often really huge (several gigabytes), such input files have become quite cumbersome. Therefore,

various techniques are used to “pack” unused (empty) areas. If any such technique is used, the exact specification

must be given.

The following must be specified:

• which file belongs to which partition (if more than one input file is used);

• which data the input file contains and which data need to be calculated;

• unpacking / decrypting algorithm (if used);

• any headers, versioning,… if should be taken into account;

• any other input file(s) related technicalities not mentioned here.

Version 1.1/08.2021 Page 72 of 85

AN: Programming NAND flash memories using Elnec device programmers

12. FR EQ UEN T LY A SKE D Q UEST I O NS

12.1. DEVICE / BUFFER CONVERSIONS

You may get a partition table specified in such a way that the beginnings of the individual partitions are specified

by the offset in device. Typically, you then need to convert this device offset to the offset in buffer (to where the

corresponding input data file needs to be loaded) and to the block number (to compile a partition table definition file).

Example:

0000 0000h boot
0010 0000h kernel
1000 0000h kernel_bkp

Device page organization is of 2 048 data bytes and 128 spare bytes. There are 64 pages in a block.

12.1.1. CONVERSION OF THE DEVICE OFFSET TO THE BLOCK NUMBER

From a firmware perspective, the spare area is outside the address space, so it is not included in the specified

device offset. It is therefore necessary to work with the page size without the spare area – i.e. 2 048 bytes in our

example.

kernel:

The easiest way is to convert the offset to a page number, and then to a block number:

0010 0000h = 1 048 576(dec) bytes

page number = 1 048 576 bytes / 2 048 bytes in page = 512

block number = 512 pages / 64 pages in block = 8

kernel_bkp:

For those who like formulas:

block_number = device_offset / (data_page_size x pages_in_block)

1000 0000h = 268 435 456(dec) bytes

target block number = 268 435 456 / (2 048 x 64) = 2 048

12.1.2. CONVERSION OF THE DEVICE OFFSET TO THE BUFFER OFFSET

From a firmware perspective, the spare area is outside the address space, so it is not included in the specified

device offset. Depending on Spare area usage setting, buffer offset must or must not include the spare area size –

Version 1.1/08.2021 Page 73 of 85

AN: Programming NAND flash memories using Elnec device programmers

see relevant chapter according to the actual spare area usage mode to see if the programmer expects spare area

data in the buffer. In partitioning mode, spare area data must always be included in the buffer, so we will consider

them in the next.

It means: buffer_page_size = data size + spare size = 2 176 bytes

kernel:

The easiest way is to convert the device offset to a page number, and then to the buffer offset:

0010 0000h = 1 048 576(dec) bytes

page number = 1 048 576 bytes / 2 048 bytes in page = 512

buffer offset = 512 pages x 2 176 bytes in page = 1 114 112(dec) bytes = 0011 0000h

kernel_bkp:

For those who like formulas:

buffer_offset = (device_offset / data_page_size) x buffer_page_size

1000 0000h = 268 435 456(dec) bytes

buffer offset = (268 435 456 / 2048) x 2 176 = 285 212 672(dec) = 1100 0000h

12.1.3. CONVERSION OF THE FILE SIZE TO THE BLOCKS COUNT

Sometimes it is necessary to convert input data file size or partition size specified in bytes to the count of blocks

in device. In principle, there is no difference between these two tasks.

Example:

boot.bin size = 710 656 bytes

kernel.bin size = 71 234 560 bytes

Device page organization is of 2 048 data bytes and 128 spare bytes. There are 64 pages in a block.

It is always necessary to clarify whether the file (or the size of the partition) contains also the spare area.

If it does, the page size = data size + spare size = 2 176 bytes.

If it does not, page size = data size = 2 048 bytes.

In partitioning mode, spare area data must always be included in the buffer, so we will consider them included in

the next.

It should be remembered that the last incomplete block, if any, must also be included in the count of blocks.

boot.bin:

The easiest way is to convert the offset to a pages count, and then to a blocks count:

pages count = 710 656 bytes / 2 176 bytes in page = 326 588 pages

Last incomplete page must be included too, therefore pages count = 327.

blocks count = 327 pages / 64 pages in block = 5.109 blocks

Last incomplete block must be included too, therefore blocks count = 6.

Version 1.1/08.2021 Page 74 of 85

AN: Programming NAND flash memories using Elnec device programmers

kernel.bin:

For those who like formulas:

blocks_count = ceil(file_size / (page_size x pages_in_block))

blocks count = ceil(71 234 560 / (2 176 x 64)) = ceil(511.50735) = 512 blocks

12.1.4. CONVERSION OF THE BLOCK NUMBER TO BUFFER OFFSET

This is a common task when loading separate input data image files for individual partitions.

Example:

Let have a partitions start_block specified as follows:

#0000 boot

#0008 kernel

#2048 kernel_bkp

Device page organization is of 2 048 data bytes and 128 spare bytes. There are 64 pages in a block.

Depending on Spare area usage setting, buffer offset must or must not include the spare area size – see the

relevant chapter according to the actual spare area usage mode to see if the programmer expects spare area data in

the buffer.

If it does, the page size = data size + spare size = 2 176 bytes.

If it does not, page size = data size = 2 048 bytes.

In partitioning mode, spare area data must always be included in the buffer, so we will consider them included in

the next.

Required offset can be obtained as a simple product according to the following formula:

buffer_offset = block_number x pages_in_block x page_size

kernel:

buffer offset = 8 x 64 x 2 176 = 1 114 112(dec) = 0011 0000h

kernel_bkp:

buffer offset = 2 048 x 64 x 2 176 = 285 212 672(dec) = 1100 0000h

Version 1.1/08.2021 Page 75 of 85

AN: Programming NAND flash memories using Elnec device programmers

12.2. COPYING NAND FLASH MEMORY

Whether you are trying to repair a broken device at a workshop or you are about to mass copy a master device

as you are used to do with a NOR flash, please remember that NAND flash memory is a faulty storage medium.

Reading an error-free data image from NAND flash memory without knowing and using all appropriate algorithms

(invalid block management, ECC,...) is a matter of luck. Therefore, we do not consider copying NAND flash memory

to be a suitable technique, we cannot recommend it at all for mass production. However, in the service, copying

memory from a functional device is often the only option available, and we are often asked for advice on how to do

this. Here it is:

Step 1: reading master-device:

• Select original device from list and then open Access Method <Alt+S> menu and change the following

settings:

• Invalid blocks management = Treat All Blocks;

• Spare Area Usage = User data;

• User Area – Number of Blocks = number of blocks in device.

• Leave the other settings in the default state. If available for the device, consider enabling special areas

and / or features.

• Run Read operation. After Read is done, save the buffer content on disk (or save the project file if any special

area and / or feature is enabled).

Now you have master device byte-by-byte image stored on your disk. Remember, please, that this image

includes all invalid blocks existing in master device, as well as all single-bit errors. They both will propagate into target

device, thus reducing its capacity (invalid blocks propagation) and data reliability (single-bit errors propagation).

Step 2: writing a copy:

• Select target device from list and load data image file from disk. If you saved the project in previous step, load

the project file. In both cases, open Access Method <Alt+S> menu and change the following settings:

• Invalid blocks management = Skip IB;

• Spare Area Usage = User data;

• User Area – Number of Blocks = see below.

• Run Program operation.

In ideal case, the number of all blocks available in device should be entered for User Area – Number of Blocks,

similarly to the read step. But this will work only if target device for copying is free of invalid blocks.

So, you must reduce the number of programmed blocks by some value in practice. We recommend to determine

some threshold for maximum invalid blocks count in device, and enter the value of total blocks in device reduced by

this threshold. The number of blocks entered here cannot be less than the number of blocks really occupied by data

in master device.

Version 1.1/08.2021 Page 76 of 85

AN: Programming NAND flash memories using Elnec device programmers

12.3. PROBLEMS WITH TOO MANY INVALID BLOCKS

12.3.1. HOW DOES YOUR PROGRAMMER IDENTIFY INVALID BLOCKS?

When scanning for invalid blocks:

The programmer strictly follows the scheme of invalid blocks marking according to the manufacturer's

specification. In practice this means, that it reads given byte / word on given pages in a block. Only if all these bytes /

words are FFh / FFFFh, the block is considered valid. Otherwise, the programmer considers the block to be invalid.

When marking new invalid blocks:

The programmer writes 00h to all bytes on the pages specified by device manufacturer to mark invalid blocks.

The standard behaviour described above can be modified by changing the settings in section Invalid Block

Indication options (extended version).

12.3.2. WHEN WORKING WITH DEVICE, PROGRAMMER REPORTS TENS (HUNDREDS, THOUSANDS)

OF INVALID BLOCKS. IS IT NORMAL?

This is not normal when working with new device. For SLC devices, the number of invalid blocks should not

exceed 2% of the total. For MLC devices, manufacturers tend to specify a minimum number of valid blocks in device

datasheet. An unusually high number of invalid blocks may indicate a problem with device, adapter, programmer, ...

This may be normal when working with an already programmed device (including solo-verification after

programming). Many host-controllers work with a different page format than the classic segmentation to data and

spare area. Block validity markers are then often overwritten with user data – if programmer finds a non-FFh value at

expected location, it will consider the block to be invalid. In such cases, however, it is customary to use some other

byte on the page to indicate the validity of the blocks. Try to find out which one is it and set Invalid Block Indication

options (extended version) section accordingly.

12.3.3. I HAVE MADE A LOT OF INVALID BLOCKS IN MY DEVICE. CAN I FIX IT SOMEHOW?

You can erase entire device including block validity information using the following setting:

Invalid Block management = Do not use

Note: There is a risk of losing information about the initial invalid blocks!

If initial invalid blocks have been disconnected from the line by the manufacturer, they will be recognized again.

But if they were only marked in the spare area, the original information about the block invalidity will be lost.

Version 1.1/08.2021 Page 77 of 85

AN: Programming NAND flash memories using Elnec device programmers

12.4. COMMAND EXECUTION DILEMMAS

12.4.1. ERASE BEFORE PROGRAMMING

NAND flash devices are sold in a deleted state. Therefore, it is not necessary to activate Erase before

programming for new devices (although, we have already solved the problems when there were some data in new

devices – probably the seller repeatedly sold some returned devices). However, erasing the device will ensure that it

will be truly blank and is incomparably faster than Blank check. Many customers therefore use Erase before

programming instead of Blank check before programming. On the other hand, when erasing, the cells are much more

stressed than when reading...

12.4.2. BLANK CHECK BEFORE PROGRAMMING

As in the previous question, it is not necessary to activate Blank check before programming for new devices.

Blank check is not necessary even in connection with Erase before programming, as then the device is checked by

the internal controller. In fact, if both Erase before programming and Blank check before programming are activated

at the same time, the programmer will not perform a blank check (see also notes in chapter Blank check before

programming).

12.4.3. VERIFY AFTER PROGRAMMING

Verify after programming checks all programmed blocks, including the blank pages (skipped on programming

due to a programming speed optimization). It does not check unused (padding) blocks between the data end and

user area end (or partition end).

12.4.4. PG4UW SOFTWARE RECOMMENDS ME TO SET MORE USER AREA BLOCKS THAN I HAVE

SET, SAYING IT IS MORE EFFECTIVE. IS IT OK?

Yes, it can happen. The control software checks the size of the input data file and compares it with the size

according to User Area – Number of Blocks setting. If it finds that the file is smaller or larger, it will suggest

adjusting the setting according to the file size.

The file may also contain blank data for unused blocks at the end. In this case, the software will offer more

blocks than necessary as a more optimal setting. Just do not accept such recommendation.

Version 1.1/08.2021 Page 78 of 85

AN: Programming NAND flash memories using Elnec device programmers

13. APP ENDI X A: ERRO R S I N NAND F L AS H – T H E

B ACKG RO U ND

NAND flash is more prone to errors than NOR flash due to its structure. The errors in NAND flash can be

classified into two major categories: permanent (non-correctable) and temporary (correctable) errors. Memory wear is

the permanent error. Temporary errors in NAND flash are Program Disturb, Read Disturb, Over-programming and

Retention errors. A few words on each type of errors follow.

13.1. MEMORY WEAR (ENDURANCE) ERRORS

Memory wear is caused by program and erase operations. Every time a cell is programmed or erased, a few

electrons get trapped in the dielectric. This causes a permanent shift in cell characteristics – not recovered by erase.

Once the cell reaches a point where the controller can no longer reliability distinguish between programmed and

Version 1.1/08.2021 Page 79 of 85

Figure 37: A NAND flash block architecture.

AN: Programming NAND flash memories using Elnec device programmers

erased states (observed as program or erase fail status), the cell is considered as bad or worn out. The block with the

worn out cell is considered as a bad block and is not used any longer

Endurance recommendations:

• always check pass / fail status for program and erase operations;

• if fail status after program operation, move all block data to another available block and mark failed block

invalid;

• use ECC to recover from errors;

• write data equally to all good blocks (wear levelling);

• protect block management (meta) data in spare area using ECC.

13.2. READ DISTURB ERRORS

To read a memory cell, the charge stored in the floating gate needs to be identified by measuring the threshold

voltage of the cell. A reference voltage is applied at the gate terminal of the required cell and the voltage at which the

cell starts conducting is measured to identify the threshold voltage. Since the memory cells are connected as strings

in NAND flash, all other cells in the string need to be turned on prior to reading the required cell. A readout voltage

higher than the maximum threshold voltage of the memory cells is applied to the gate terminal of all other cells in the

string to turn them on or unselect the cells. In NAND flash, the gate terminals of multiple memory cells in different

strings are connected together as a page. To unselect a cell in the string, the entire page need to be unselected,

which means the readout voltage needs to be applied to the gate terminals of all the cells in a page.

Version 1.1/08.2021 Page 80 of 85

Figure 38: Wear-out (endurance) errors.

AN: Programming NAND flash memories using Elnec device programmers

Even though the readout voltage is much smaller compared to program or erase voltages, this can still cause a

slight shift in the threshold voltage of the cells. These small shifts in threshold voltage accumulate over read cycles,

eventually changing the state of the cell. This unintentional shift in the threshold voltage of a cell due to read

operation is known as read disturb error. Read disturb errors affect only the cells in unselected pages in the same

block being read. As this is a temporary error, the error can be resolved by copying the block to another block, then

erasing failed block to make it available again.

Reducing read disturbs:

• rule-of-thumb for excessive reads in the block between two erase operation:

• SLC – 1 000 000 read cycles;

• MLC – 100 000 read cycles.

• if possible, read equally from pages within the block;

• if exceeding rule-of-thumb cycle count, move the block to another location and erase the original block;

• establish ECC threshold to move the data;

• erase resets the read disturb cycle count;

• use ECC to recover from read disturb errors.

13.3. PROGRAM DISTURB ERRORS

A high voltage is applied across the memory cell for program and erase operations. Due to parasitic capacitive

coupling, the adjacent cells also receive an elevated voltage stress that can alter the threshold level of these

Version 1.1/08.2021 Page 81 of 85

Figure 39: Read disturb errors.

AN: Programming NAND flash memories using Elnec device programmers

neighbouring cells. This unintentional shift in threshold level due to program or erase operations is known as a

program disturb error.

A program disturb error affects cells in both selected and unselected pages, but only in the block being

programmed. The parasitic capacitive coupling between adjacent cells increases with shrinking lithographic node, the

same reason the Raw Bit Error Rate increases for smaller lithographic nodes. To recover from this error, the block

needs to be erased after copying its contents to another block.

Reducing program disturb:

• program pages in a block sequentially from page 0 to the top-most page in a block;

• minimize partial-page programming operations (SLC);

• it is mandatory to restrict page programming to a single operation (MLC);

• use ECC to recover from program disturb errors.

13.4. OVER-PROGRAMMING ERRORS

Over-programming is another correctable error in NAND flash. While programming, the threshold voltage of

some cells can go too high. As explained in the previous sections, memory cells need to be turned on or unselected

for read and program operations. Cells with a very high threshold voltage will not turn on as expected when readout

Version 1.1/08.2021 Page 82 of 85

Figure 40: Program disturb errors.

AN: Programming NAND flash memories using Elnec device programmers

voltage is applied. This can result in incorrect read and program operations for other pages in the string. This is

known as an over-programming error.

Over-programming errors are often caused by memory cells that hold a higher initial charge on the floating gate

due to an improper erase operation. They also occur when memory cells are nearing a worn out state. To recover

from this error, the block need to be erased after copying the contents to another block.

13.5. DATA RETENTION ERRORS

The data stored in flash memories tend to get corrupted over time. This is known as a data retention error.

Retention errors are caused by loss of charge stored in the floating gate. Even though the gate oxide is an insulating

layer, electrons stored in the floating gate still leak through it from time to time. With longer durations, the loss of

charge accumulates, eventually changing the programmed state of the cell and causing a data error. To recover from

this error, the block need to be erased after copying the contents to another block.

Retention errors can happen to any cell in any block of the flash memory. Due to wear of the oxide layer,

memory cells with more program erase cycles are more likely to experience retention errors. Temperature is another

factor which contributes to retention error; the higher the temperature, the greater the chance for a retention error. In

MLC, TLC, and QLC memories that store more bits in each memory cell, the cells with more programmed electrons

(closer to binary 0) are more prone to leakage of charge. Retention errors depend on many aspects of the flash

manufacturing technology such as lithographic node, oxide thickness, and so on. Data retention is a key parameter in

all flash datasheets.

Version 1.1/08.2021 Page 83 of 85

Figure 41: Over-programming errors.

AN: Programming NAND flash memories using Elnec device programmers

Improving data retention:

• limit program / erase cycles in blocks that require long retention;

• limit reads to reduce read disturb.

Note: This chapter draws on the following publications:

• Avinash Aravindan, Flash 101: Errors in NAND Flash: https://www.embedded.com/flash-101-errors-in-

nand-flash/

• Jim Cooke, The Inconvenient Truths of NAND Flash Memory, Flash Memory Summit, August 2007

Version 1.1/08.2021 Page 84 of 85

Figure 42: Data retention errors.

https://www.embedded.com/flash-101-errors-in-nand-flash/
https://www.embedded.com/flash-101-errors-in-nand-flash/

AN: Programming NAND flash memories using Elnec device programmers

VERSIONS HISTORY

Revision Date Comment

0.1 2013, December 04 • Initial draft

0.2 2017, October 16 • MBN file size updated

0.3 2018, November 19 • Discard invalid block(s) data chapter added

• Read JEDEC parameters page chapter added

• Features availability information refined

• Small text corrections

1.0 2021, June 16 • Document formatting changed from scratch

• Added chapter Brief comments on NAND flash inwards

• Updated chapter Access method window

• Updated chapter Device operation options window

• Added chapter Using Multi-Project feature for NAND flash

• Added chapter Customized NAND flash support

• Added chapter Frequently asked questions

• Added appendix A: Errors in NAND flash – the background

1.1 2021, August 18 • Missing source references fixed

Version 1.1/08.2021 Page 85 of 85

	1. Brief comments on NAND flash inwards
	2. Brief comments on invalid blocks
	3. Brief comments on bit errors
	4. Two factors that programmer relies on
	5. Data organization in pg4uw control software buffer
	6. Loading data into pg4uw control software buffer
	6.1. Loading multiple data images

	7. Access method window
	7.1. Invalid Block Management
	7.1.1. Treat All Blocks
	7.1.2. Skip IB
	7.1.3. Skip IB with map in 0-th block
	7.1.4. Skip IB with excess abandon
	7.1.5. RBA (Reserved Block Area)
	7.1.6. Check IB without access
	7.1.7. Check IB with Skip IB
	7.1.8. Discard Invalid block(s) data
	7.1.9. Multiple partitions with Skip IB
	7.1.9.1. Partition definition file
	7.1.9.1.1. Qualcomm multiply partition format (*.mbn)
	7.1.9.1.1.1. Procedure for two input files
	7.1.9.1.1.2. Procedure for single input file

	7.1.9.1.2. Comma separated values format (*.csv)
	7.1.9.1.3. Group define format (*.def)
	7.1.9.1.4. Loading Partition definition file
	7.1.9.1.4.1. Error codes on Partition definition file load

	7.1.9.2. Access Method window options validity in partitioning mode
	7.1.9.3. Safe working procedure

	7.1.10. Linux MTD compatible
	7.1.11. Redirection with HW Look Up Table (LUT)

	7.2. Spare area usage
	7.2.1. Do not use
	7.2.2. User data
	7.2.3. User data with IB info forced
	7.2.4. ECC – Hamming (by Samsung)
	7.2.5. ECC – Hamming (2×256 byte frame) variant 1 and 2

	7.3. Device internal ECC controller options
	7.3.1. Enable device internal ECC controller

	7.4. User Area options
	7.4.1. User Area – Start Block
	7.4.2. User Area – Number of Blocks
	7.4.3. User Area – Last Block
	7.4.4. User Area – Max. Allowed Number of Invalid Blocks in Device

	7.5. Required Valid Blocks Area options
	7.5.1. Check Required Valid Blocks Area
	7.5.2. Required Valid Blocks Area – Start Block
	7.5.3. Required Valid Blocks Area – Number of Blocks

	7.6. Max. Allowed Number of Invalid Blocks in Device options
	7.6.1. Check Max. Allowed Number of Invalid Blocks in Device
	7.6.2. Max. Allowed Number of Invalid Blocks in Device

	7.7. Behaviour on new invalid block options
	7.7.1. If new invalid blocks is developed

	7.8. Tolerant verification options
	7.8.1. Use Tolerant Verify feature
	7.8.2. ECC frame size
	7.8.3. Acceptable number of errors
	7.8.4. Tolerant verify examples

	7.9. Invalid Block Indication options (simplified version)
	7.9.1. Invalid Block Indication Byte Value

	7.10. Invalid Block Indication options (extended version)
	7.10.1. Use customized invalid blocks indication scheme
	7.10.2. Alternative block validity indication byte value for invalid block
	7.10.3. Alternative block validity indication byte value for good block
	7.10.4. Block validity indication byte offset on a page
	7.10.5. Pages for block validity indication
	7.10.6. Fill invalid block with predefined value
	7.10.7. Invalid block filling value

	7.11. Reserved block area options
	7.11.1. RBA Table – Start Block
	7.11.2. RBA Table – Number of Blocks
	7.11.3. RBA Table should be located

	7.12. Linux MTD compatible options
	7.12.1. Write BBT to device
	7.12.2. BBT should be placed
	7.12.3. BBT should be placed starting from
	7.12.4. Number of blocks reserved for BBT
	7.12.5. PAGE numbers where BBT should be placed
	7.12.6. Page numbers where Mirror BBT should be placed
	7.12.7. BBT should be stored
	7.12.8. Store BBT version counter
	7.12.9. BBT version counter Value
	7.12.10. Number of bits used per block in BBT on device
	7.12.11. Value used for RESERVED blocks marking
	7.12.12. Use Smart Media bytes order for ECC
	7.12.13. Apply MTD specific ECC on partition data

	7.13. Special device features

	8. Device operation options window
	8.1. Insertion test and / or ID check
	8.1.1. Insertion test
	8.1.1.1. Basic test of IC functionality

	8.1.2. Device ID check error terminates the operation

	8.2. Command execution
	8.2.1. Erase before programming
	8.2.2. Blank check before programming
	8.2.3. Verify after reading
	8.2.4. Verify after programming

	8.3. Special device operation options
	8.3.1. Target device uses

	9. Special NAND flash commands
	9.1. Read ONFI parameter page
	9.2. Read JEDEC parameter page
	9.3. Check invalid blocks

	10. Using Multi-Project feature for NAND flash
	10.1. Working with Multi-Project Wizard
	10.1.1. Defining the Project files for individual NAND partitions
	10.1.2. Building the Multi-Project file
	10.1.3. Running the multi-chip device operation

	11. Customized NAND flash support
	11.1. Partitioning scheme
	11.2. Invalid blocks management scheme
	11.3. Dynamic meta-data scheme
	11.4. Page arrangement scheme
	11.5. Error control and correction scheme
	11.6. Unused blocks formatting scheme
	11.7. Input data file scheme

	12. Frequently asked questions
	12.1. Device / buffer conversions
	12.1.1. Conversion of the device offset to the block number
	12.1.2. Conversion of the device offset to the buffer offset
	12.1.3. Conversion of the file size to the blocks count
	12.1.4. Conversion of the block number to buffer offset

	12.2. Copying NAND flash memory
	12.3. Problems with too many invalid blocks
	12.3.1. How does your programmer identify invalid blocks?
	12.3.2. When working with device, programmer reports tens (hundreds, thousands) of invalid blocks. Is it normal?
	12.3.3. I have made a lot of invalid blocks in my device. Can I fix it somehow?

	12.4. Command execution dilemmas
	12.4.1. Erase before programming
	12.4.2. Blank check before programming
	12.4.3. Verify after programming
	12.4.4. Pg4uw software recommends me to set more User Area blocks than I have set, saying it is more effective. Is it OK?

	13. Appendix A: Errors in NAND flash – the background
	13.1. Memory wear (endurance) errors
	13.2. Read disturb errors
	13.3. Program disturb errors
	13.4. Over-programming errors
	13.5. Data retention errors

